Poynting’s Theorem with Magnetic Monopoles

Kirk T. McDonald

Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544

(March 23, 2013; updated December 14, 2017)

1 Problem

Deduce a version of Poynting’s theorem [1] in macroscopic electrodynamics supposing that magnetic charges (monopoles) exist in Nature. Discuss its relation to the Lorentz force law for magnetic charges.¹

2 Solution

2.1 Maxwell’s Equations

When Heaviside first presented Maxwell’s equations in vector notation [3] he assumed that in addition to electric charge and current densities, ρₑ and Jₑ, there existed magnetic charge and current densities, ρₘ and Jₘ, although there remains no experimental evidence for the latter.²,³ Maxwell’s equations for microscopic electrodynamics are then (in SI units)

\[\nabla \cdot \varepsilon_0 \mathbf{E} = \rho_e, \quad \nabla \cdot \frac{\mathbf{B}}{\mu_0} = \rho_m, \quad -c^2 \nabla \times \varepsilon_0 \mathbf{E} = \frac{\partial \mathbf{B}}{\partial t} / \mu_0 + \mathbf{J}_m, \quad \nabla \times \frac{\mathbf{B}}{\mu_0} = \frac{\partial \varepsilon_0 \mathbf{E}}{\partial t} + \mathbf{J}_e, \]

where \(c = 1/\sqrt{\varepsilon_0 \mu_0} \) is the speed of light in vacuum. In macroscopic electrodynamics we consider media that contain volume densities of electric- and Ampère magnetic-dipole moments, \(\mathbf{P}_e \) and \(\mathbf{M}_e \), respectively (often called the densities of polarization and magnetization). Supposing that magnetic charges exist, the media could also contain volume densities of (Gilbertian) electric- and magnetic-dipole moments, \(\mathbf{P}_m \) and \(\mathbf{M}_m \), respectively. These densities can be associated with bound charge and current densities, which together with the “free” charge and current densities \(\tilde{\rho}_e, \tilde{\mathbf{J}}_e, \tilde{\rho}_m \) and \(\tilde{\mathbf{J}}_m \) comprise the total charge and current densities, and are related by

\[
\begin{align*}
\rho_e &= \tilde{\rho}_e - \nabla \cdot \mathbf{P}_e, \quad & \mathbf{J}_e &= \tilde{\mathbf{J}}_e + \frac{\partial \mathbf{P}_e}{\partial t} + \nabla \times \mathbf{M}_e, \\
\rho_m &= \tilde{\rho}_m - \nabla \cdot \mathbf{M}_m, \quad & \mathbf{J}_m &= \tilde{\mathbf{J}}_m + \frac{\partial \mathbf{M}_m}{\partial t} - c^2 \nabla \times \mathbf{P}_m.
\end{align*}
\]

¹Only in three spatial dimensions do the electric and magnetic fields of electric and magnetic charges have the same character, such that a single electric and a single magnetic field could describe the effects of both types of charges [2].

²Heaviside seems to have regarded magnetic charges as “fictitious,” as indicated on p. 25 of [4].

³If the interaction of magnetic charges with magnetic moments due to electrical currents is to conserve energy, the magnetic charges must be at the end of “strings” of magnetic flux, as first postulated by Dirac [6, 7].
It is customary in macroscopic electrodynamics to use versions of Maxwell’s equations in which only “free” charge and current densities appear. For this we introduce the fields\(^4\)

\[
\begin{align*}
D_e &= \varepsilon_0 E + P_e, \\
H_e &= \frac{B}{\mu_0} - M_e, \\
D_m &= \frac{E}{\mu_0} - c^2 P_m, \\
H_m &= \frac{B}{\mu_0} + M_m, \\
\end{align*}
\]

(4)
such that \(D_e\) and \(H_m\), and also \(H_e\) and \(D_m\), have similar forms, and

\[
\nabla \cdot D_e = \tilde{\rho}_e, \quad \nabla \cdot H_m = \tilde{\rho}_m, \quad -\nabla \times D_m = \frac{\partial H_m}{\partial t} + \tilde{J}_m, \quad \nabla \times H_e = \frac{\partial D_e}{\partial t} + \tilde{J}_e,
\]

(5)

where in the absence of magnetic charges \(D_e\) and \(H_e\) are the familiar fields \(D\) and \(H\).\(^5,6\)

2.2 Force Laws

In static situations with no “free” currents \(\tilde{J}_e\) or \(\tilde{J}_m\) the curls of both \(D_m\) and \(H_e\) are zero and these fields can be deduced from scalar potentials \(V_e\) and \(V_m\),

\[
\nabla \times D_m = 0 \iff D_m = -\nabla V_e, \quad \nabla \times H_e = 0 \iff H_e = -\nabla V_m.
\]

(6)

We can associate potential energies,

\[
U_e = \mu_0 q_v V_e, \quad U_m = \mu_0 q_m V_m,
\]

(7)

with electric and magnetic “test” charges \(q_v\) and \(q_m\) in scalar potentials due to other charges. If those other charges are held fixed, the forces on the “test” charges can be written as

\[
F_e = -q_v \nabla V_e = \mu_0 q_v D_m, \quad F_m = -q_m \nabla V_m = \mu_0 q_m H_e.
\]

(8)

\(^4\)The forms (4) were suggested to the author by David Griffiths in a comment on an early draft of this note. Such “double” \(D\) and \(H\) fields were anticipated by Heaviside [5], who wrote \(H\) for \(H_e\) and \(h_0\) for \(H_m\) near his eq. (88). The only explicit statement of eq. (4) in the literature seems to be in sec. 4 of [8], with the identifications that \(\varepsilon \to E, B \to B, p \to P_e, m \to M_e, m^* \to P_m, p^* \to M_m, D \to D_e, H \to H_e, E \to D_m, B \to H_m\). See Appendix D.2 for a justification of eq. (4) via the concept of electromagnetic duality.

\(^5\)The relation \(B = \mu_0 (H + M)\) (or \(B = H + 4\pi M\) in Gaussian units) seems to have been first introduced by W. Thomson in 1871, eq. (1), p. 401 of [9], and appears in sec. 399 of Maxwell’s Treatise [10].

\(^6\)Neither Thomson nor Maxwell enunciated a concept of the polarization density \(P\) of electric dipoles, and only regarded the relation between \(D\) and \(E\) as \(D = \varepsilon E\), where \(\varepsilon\) is now called the (relative) dielectric constant and/or the (relative) permittivity. See Art. 111 of [11] for Maxwell’s use of the term polarization.

In 1885, Heaviside introduced the concept of an electret as the electrical analog of a permanent magnet [12], and proposed that the electrical analog of magnetization (density) be called electrification. He did not propose a symbol for this, nor did he write an equation such as \(D = E + 4\pi P\).

The density of electric dipoles was called the polarization by Lorentz (1892) in sec. 102, p. 465 of [13], and assigned the symbol \(M\).

Larmor (1895), p. 738 of [14], introduced the vector \((f', g', h')\) for what is now written as the polarization density \(P\), and related it to the electric field \(E = (P, Q, R)\) as \((f', g', h') = (K - 1)(P, Q, R)/4\pi\), i.e., \(P = (\varepsilon - 1)E/4\pi = (D - E)/4\pi\). Larmor’s notation was mentioned briefly on p. 91 of [15] (1898).

The symbol \(M\) for dielectric polarization was changed to \(P\) by Lorentz on p. 263 of [16] (1902), and a relation equivalent to \(D = E + 4\pi P\) was given in eq. (22), p. 265. See also p. 224, and eq. (147), p. 240 of [17] (1903), which latter subsequently appeared as eq. (142), p. 155 of the textbook [18] (1904) by Abraham.
The magnetic version of eq. (8) was introduced by Poisson [19], and Maxwell [10] reflected this tradition by calling $H_e = H$ the magnetic force (per unit magnetic charge) and B the magnetic induction. Similarly, if an electric charge q_e with velocity v could be made to move around a loop some or all of which lies inside a Gilbertian magnetic material where E does not equal q_eE or q_mB/μ_0.

This contrasts with force calculations for the effective magnetic-charge density, $\rho_{m,\text{eff}} = -\nabla \cdot M_e$, which represent effects of Ampèrian currents, as discussed in Appendix A.

As noted in [21] and on p. 429 of [22], if a magnetic charge q_m could be made to move around a loop some or all of which lies inside an Ampérian magnetic material where B does not equal $\mu_0 H_e$ (and hence $\nabla \times B$ is nonzero around the loop), then energy could be extracted from the system each cycle if the force were q_mB/μ_0, and we would have a perpetual-motion machine. Similarly, if an electric charge q_e could be made to move around a loop some or all of which lies inside a Gilbertian magnetic material where E does not equal $\mu_0 D_m$ (and hence $\nabla \times E$ is nonzero around the loop), then energy could be extracted from the system each cycle if the force were q_eE, and we would again have a perpetual-motion machine.

The electromagnetic force on a moving electric charge q_e and magnetic charge q_m, each with velocity v, is, in microscopic electrodynamics,\(^9\)\(^10\)\(^11\)

\[
F_e = q_e(E + v \times B) = \mu_0 q_e(D_m + v \times H_m), \tag{9}
\]

\[
F_m = q_m(B - \frac{v}{c^2} \times E) = \mu_0 q_m(H_e - v \times D_e). \tag{10}
\]

Consistency of the Lorentz force law with special relativity requires that either E and B or D_e and H_e or D_m and H_m appear in F_e and in F_m (see Appendix B). In macroscopic electrodynamics the Lorentz force law for the force density f on “free” charge and current

\(^7\)The notion of the force on a static “test” charge inside a macroscopic medium is somewhat contradictory, in that the macroscopic fields are based on averages over volumes larger than atoms/molecules. People often suppose the test charge to be inside a cavity whose volume is at least as large as an atom/molecule, but then the magnitude of the force depends on the shape of the cavity. A more meaningful issue is the force on a “test” charge that moves through the medium, thereby sampling the microscopic fields in a way that can be well approximated of the macroscopic fields. See also sec. 8 of [20].

\(^8\)In sec. 400 of [10], Maxwell noted that (in Gaussian units) the H field inside a disk-shaped cavity with axis parallel to B and H inside a magnetic medium has $H_{\text{cavity}} = B_{\text{cavity}} = B_{\text{medium}} = H_{\text{medium}} + 4\pi M$, so that in this case one could say that the force on a magnetic charge q_m in the cavity is $F_m = q_m H_{\text{cavity}} = q_mB_{\text{medium}}$. The led Maxwell to the characterization of B as the “actual magnetic force,” which this author finds misleading.

\(^9\)Lorentz advocated the form $F_e = \mu_0 q_e(D_e + v \times H_e)$ in eq. (V), p. 21, of [23], although he seems mainly to have considered its use in vacuum. See also eq. (23), p. 14, of [24]. That is, Lorentz considered D_e and H_e, rather than E and B, to be the microscopic electromagnetic fields.

\(^10\)It is generally considered that Heaviside first gave the Lorentz force law (9) for electric charges in [25], but the key insight is already visible for the electric case in [3] and for the magnetic case in [26]. The form of F_m in terms of B and E is implicit in eq. (7) of [27] and explicit in sec. 28B of [28]. See also [29, 30].

\(^11\)For the macroscopic equations to appear as in eq. (5), as given, for examples, in sec. 7.3.4 and prob. 7.60 of [31], the Lorentz force law must have the form (10) for magnetic charges. One can also redefine the strength of magnetic charges, $\rho_m \to \rho_m/\mu_0$, $J_m \to J_m/\mu_0$, which leads to the forms given, for example, in sec. 6.11 of [32]. These alternative definitions echo a debate initiated by Clausius in 1882 [33].
densities takes the forms12,13

\[f_e = \vec{\rho}_e \vec{E} + \vec{J}_e \times \vec{B}, \quad \text{or} \quad \mu_0 (\vec{\rho}_e \vec{D}_m + \vec{J}_e \times \vec{H}_m), \quad (11) \]

\[f_m = \vec{\rho}_m \vec{B} - \frac{\vec{J}_m}{c^2} \times \vec{E}, \quad \text{or} \quad \mu_0 (\vec{\rho}_m \vec{H}_e - \vec{J}_m \times \vec{D}_e). \quad (12) \]

It has been verified that \(\vec{B} \) not \(\vec{H}_e \) deflects high-energy electrically charged particles as they pass through magnetized iron (with no magnetic charges) \[40\], which confirms either form of \(f_e \) in eq. (11).14 See also \[43, 44, 45\]. The above argument about perpetual motion then favors the second forms of eqs. (11)-(12).

Further confirmation of this comes via consideration of energy flow in the electromagnetic fields.

2.3 Poynting’s Theorem

Poynting’s argument \[1\] relates the rate of work done by electromagnetic fields on “free” electric and magnetic currents to both flow of energy and to rate of change of stored energy. This argument has delicacies of interpretation, discussed, for example, in sec. 2.19 of \[46\].

The density of the time rate of change of work on (“free”) electric currents is, from eq. (11),

\[\frac{d\tilde{\omega}_e}{dt} = f_e \cdot \vec{v}_e = \vec{J}_e \cdot \vec{E}, \quad \text{or} \quad \mu_0 \vec{J}_e \cdot \vec{D}_m. \quad (13) \]

Thus, either

\[\frac{d\tilde{\omega}_e}{dt} = \vec{J}_e \cdot \vec{E} = \vec{E} \cdot \left(\nabla \times \vec{H}_e - \frac{\partial \vec{D}_e}{\partial t} \right) \]

\[= -\nabla \cdot (\vec{E} \times \vec{H}_e) + \vec{H}_e \cdot \nabla \times \vec{E} - \vec{E} \cdot \frac{\partial \vec{D}_e}{\partial t} \]

\[= -\nabla \cdot (\vec{E} \times \vec{H}_e) - \vec{E} \cdot \frac{\partial \vec{D}_e}{\partial t} - \vec{H}_e \cdot \frac{\partial \vec{B}}{\partial t} - \mu_0 \vec{J}_m \cdot \vec{H}_e, \quad (14) \]

where the total current \(\vec{J}_m \) rather than the “free” current \(\vec{J}_m \) appears in the last line, or

\[\frac{d\tilde{\omega}_e}{dt} = \mu_0 \vec{J}_e \cdot \vec{D}_m = \mu_0 \vec{D}_m \cdot \left(\nabla \times \vec{H}_e - \frac{\partial \vec{D}_e}{\partial t} \right) \]

\[= -\mu_0 \nabla \cdot (\vec{D}_m \times \vec{H}_e) + \mu_0 \vec{H}_e \cdot \nabla \times \vec{D}_m - \mu_0 \vec{D}_m \cdot \frac{\partial \vec{D}_e}{\partial t}. \]

\[= -\mu_0 \nabla \cdot (\vec{D}_m \times \vec{H}_e) - \mu_0 \vec{D}_m \cdot \frac{\partial \vec{D}_e}{\partial t} - \mu_0 \vec{H}_e \cdot \frac{\partial \vec{H}_m}{\partial t} - \mu_0 \vec{J}_m \cdot \vec{H}_e. \quad (15) \]

12A subtlety is that the field \(\vec{B} \) in the first form of eq. (11) is not the total field, but rather the field at the location of the free current that would exist in its absence. See, for example, \[34\], especially sec. 4.

13In 1908-10, Einstein argued that the Lorentz force law should take the form \(f_e = \mu_0 (\vec{\rho}_e \vec{D}_m + \vec{J}_e \times \vec{H}_e) \) inside materials \[35, 36\], perhaps based on a misunderstanding discussed in \[37\], or that discussed in sec. 2.3.1 of \[38\]. This misunderstanding underlies the recent “paradox” of Mansuripur \[39\].

14The magnetization of materials such as iron depends on the character of the magnetic moment of electrons. An argument due to Fermi \[41\] that the hyperfine interaction depends on the magnetic field at the origin, and so can distinguish between Ampèrian and Gilbertian moments of “nuclei.” For the case of positronium (\(e^+e^- \)) the data imply that the moment of the electron is Ampèrian, as discussed in \[42\].
Similarly, for “free” magnetic currents in macroscopic electrodynamics we have, from eq. (12),

\[
\frac{d\tilde{w}_m}{dt} = f_m \cdot v_m = \tilde{J}_m \cdot B \quad \text{or} \quad \mu_0\tilde{J}_m \cdot H_e, \tag{16}
\]

A requirement of simplicity of Poynting’s theorem when magnetic charges are included favors that the time rate of change of the work done on “free” electric and magnetic currents be the second forms in eqs. (13) and (16), and that the Lorentz force law on macroscopic electric and magnetic charge and current densities be

\[
f_e = \mu_0(\tilde{\rho}_e D_m + \tilde{J}_e \times H_m) \rightarrow \mu_0\tilde{\rho}_e(D_m + v_e \times H_m), \tag{17}
\]

\[
f_m = \mu_0(\tilde{\rho}_m H_e - \tilde{J}_m \times D_e) \rightarrow \mu_0\tilde{\rho}_m(H_e - v_m \times D_e), \tag{18}
\]

(as also required not to have magnetic perpetual-motion machines).15,16

Then,

\[
\frac{d\tilde{w}}{dt} = \frac{d\tilde{w}_e}{dt} + \frac{d\tilde{w}_m}{dt} = -\mu_0 \nabla \cdot (D_m \times H_e) - \mu_0 D_m \cdot \frac{\partial D_e}{\partial t} - \mu_0 H_e \cdot \frac{\partial H_m}{\partial t} \equiv - \left(\nabla \cdot S + \frac{\partial u}{\partial t} \right), \tag{19}
\]

which is the same form as if only electric charges exist, and hence the usual version of Poynting’s theorem still applies if magnetic charges exist. That is, the Poynting vector,

\[
S = \mu_0 D_m \times H_e \quad \text{(all media),} \tag{20}
\]

is interpreted as describing the flow of energy in the electromagnetic field, and for linear media in which \(D_e\) and \(D_m\) are both proportional to \(E\), and \(H_e\) and \(H_m\) are both proportional to \(B\),17 the density \(u\) of stored energy associated with the electromagnetic fields is

\[
u = \mu_0 \frac{D_e \cdot D_m + H_e \cdot H_m}{2} \quad \text{(linear media).} \tag{21}
\]

Following a general argument of Poincaré [49] and Abraham [50], we could suppose that the density of momentum is related to the Poynting vector by \(S/c^2\), in which case we would consider the density of field momentum to be

\[
p^{(A)}_{\text{field}} = \frac{S}{c^2} = \frac{D_m \times H_e}{\epsilon_0} \quad \text{(Abraham).} \tag{22}
\]

15The form (18) is also affirmed in [8] via considerations of a magnetic current in a “wire” surrounded by a dielectric medium. The issues here are somewhat different from those for the force on individual moving charges, but are similar to those considered in [47] for an electrical current in a wire inside a magnetic medium.

16It is argued in [48] that a slowly moving magnetic charge perturbs electric polarization of a dielectric medium in such a way that the velocity-dependent force is \(-q_m v \times \epsilon_0 E\), where \(E = D/\epsilon\) is the electric field in the absence of the moving magnetic charge. The argument of [48] seems to this author to be a variant of sec. 400 of [10] in which it is supposed that the charge resides in a “cavity” whose surface details affect the fields experienced by the charge. Such arguments assume that the charge occupies a volume at least equal to one atom/molecule of the medium, which might have seemed reasonable to Maxwell but is not consistent with our present understanding of the size of elementary charges. The results of [40] show that a moving electric charges does not create a “cavity” inside a magnetic medium wherein the average \(B\) field differs from the macroscopic average \(B\) field in the absence of the charge. We infer that a moving magnetic charge would experience an average \(D\) inside a dielectric medium equal to the macroscopic average \(D\) field in the absence of the charge.

17See eqs. (81)-(84) for discussion of the linear relations \(E = D_e/\epsilon_e = D_m/\epsilon_m\) and \(B = \mu_e H_e = \mu_m H_m\).
That Poynting’s theorem retains its usual form when magnetic charges are present is discussed by Heaviside in sec. 19 of [5]. That the form of the Lorentz force law for magnetic charge and current densities is given by eqs. (17)-(18) is consistent with Heaviside’s argument; for example, his eq. (88), but is not explicitly stated. See also sec. 50, p. 49 of [4].

A peculiar argument that the “ordinary” form of Poynting’s theorem implies the existence of magnetic charges is given in sec. 7.10 of [51]; thus misunderstanding is clarified in [52].

The extension of Poynting’s theorem to momentum flow, with the implication that $p_{\text{field}} = \mu_0 D_e \times H_m$ is the density of stored momentum, as argued by Minkowski [53], remains valid if the Lorentz force law for magnetic charges is given by eqs. (17)-(18), but not for other forms, as discussed in sec. V of [48]. See also Appendix C.

In a search for an isolated magnetic charge q_m in media that otherwise contain only electric charges and currents, $D_e \to D$, $D_m \to E/\mu_0$, $H_e \to H$, $H_m \to B/\mu_0$, the Lorentz force law reduces to

$$F_e = q_e(E + v_e \times B), \quad F_m = \mu_0 q_m(H - v_m \times E). \quad (23)$$

A Appendix: Effective Magnetic Charge Density

$\rho_{m,\text{eff}} = -\nabla \cdot M$

So far as is presently known, magnetic charges do not exist, and all magnetic effects can be associated with electrical currents, as first advocated by Ampère [54].18 For materials with magnetization density $M_e = M$ the associated (macroscopic) electrical current density is

$$J_e = \nabla \times M, \quad (24)$$

and on the surface of such materials there is the surface current density

$$K_e = \hat{n} \times M, \quad (25)$$

where \hat{n} is the outward unit vector normal to the surface.

Alternatively, we can suppose the magnetization is associated with densities of effective magnetic charges. Some care is required to use this approach, since a true (Gilbertian) magnetic charge density ρ_m would obey $\nabla \cdot B = \mu_0 \rho_m$ as in eq. (1), and the static force density on these charges would be $F_m = \mu_0 \rho_m H_e$. However, in Nature $\nabla \cdot B = 0 = \nabla \cdot \mu_0 (H + M)$, so we can write

$$\nabla \cdot H = -\nabla \cdot M = \rho_{m,\text{eff}}, \quad (26)$$

and identify

$$\rho_{m,\text{eff}} = -\nabla \cdot M \quad (27)$$

as the volume density of effective (Ampérian) magnetic charges.

Inside linear magnetic media, where $B = \mu H$, the Maxwell equation $\nabla \cdot B = 0$ then implies that $\rho_{m,\text{eff}} = 0$. However, a surface density $\sigma_{m,\text{eff}}$ of effective magnetic charges can

18For discussion of the experimental evidence that “permanent” magnetization is Ampèrian, see [38].
exist on an interface between two media, and we see that Gauss’ law for the field H implies that

$$\sigma_{m,\text{eff}} = (H_2 - H_1) \cdot \hat{n},$$

(28)

where unit normal \hat{n} points across the interface from medium 1 to medium 2. The magnetic surface charge density can also be written in terms of the magnetization $M = B/\mu_0 - H$ as

$$\sigma_{m,\text{eff}} = (M_1 - M_2) \cdot \hat{n},$$

(29)

since $\nabla \cdot B = 0$ insures that the normal component of B is continuous at the interface.

The force on the surface density of effective magnetic charges is

$$F = \sigma_{m,\text{eff}} B,$$

(30)

since the effective magnetic charges, which are a representation of effects of electrical currents, couple to the magnetic field B, as in eq. (9).\(^{19}\)

The total force on a linear medium is, in this view, the sum of the force on the conduction current plus the force on the effective magnetic surface charges. Care is required to implement such a computation of the force, as discussed in [47], where eq. (30) is affirmed by example.

The key result of this Appendix is that while “true” (Gilbertian, and nonexistent in Nature) magnetic charges q_m obey the force law $F_{m,\text{true}} = \mu_0 q_m H$, the effective (Ampèrian) magnetic charges (which are a representation of effects of electrical currents) obey $F_{m,\text{eff}} = q_{m,\text{eff}} B$.

For “effective” Ampèrian magnetic charges the magnetic fields obey $\nabla \cdot B/\mu_0 = 0$ and $\nabla \cdot H_e = \rho_{m,\text{eff}}$ inside magnetic materials, while for “true” Gilbertian magnetic charges the fields obey $\nabla \cdot B/\mu_0 = \rho_{m,\text{true}}$ and $\nabla \cdot H_m = 0$ inside magnetic materials where there are no “free,” “true” magnetic charges. Hence, the roles of B/μ_0 and H are reversed in magnetic materials that contain “true” or “effective” magnetic charges. We illustrate this below for the fields of a uniformly magnetized sphere.

A.1 Fields of a Uniformly Magnetized Sphere

In this subappendix we deduce the static magnetic fields associated with uniform spheres of radius a with either uniform Gilbertian magnetization density M_m or uniform Ampèrian (effective) magnetization density M_e.

A.1.1 Uniform Ampèrian Magnetization Density M_e

The total magnetic moment of the sphere is

$$m_e = \frac{4\pi M_e a^3}{3}.$$

\(^{19}\)Equation (30) is in agreement with prob. 5.20 of [32], recalling the different convention for factors of μ_0 used there. However, the Coulomb Committee in their eq. (1.3-4) [55], and Jefimenko in his eq. (14-9.9a,b) [56], recommends that the field H/μ_0 be used rather than B when using the method of effective magnetic charges, which would imply a force μ_0/μ times that of eq. (30) for linear media.
We speed up the derivation by noting that the fields inside the sphere are uniform, and the fields outside the sphere are the same as those of a point magnetic dipole of strength \(\mathbf{m}_e \),

\[
\frac{\mathbf{B}(r > a)}{\mu_0} = \mathbf{H}_e(r > a) = \mathbf{H}_m(r > a) = \frac{3(\mathbf{m}_e \cdot \hat{\mathbf{r}})\hat{\mathbf{r}} - \mathbf{m}_e}{4\pi r^3} = \frac{M_e a^3 (2 \cos \theta \hat{\mathbf{r}} - \sin \theta \hat{\theta})}{3r^3},
\]

(32)
in a spherical coordinate system with origin at the center of the sphere and \(z \)-axis parallel to \(\mathbf{M}_e \).

To characterize the fields inside the sphere, we note use the method of effective magnetic charges (Appendix A). Since \(\mathbf{M}_e \) is constant inside the sphere, there is no net effective magnetic charge density there, \(\rho_{e,\text{eff}}(r < a) = -\nabla \cdot \mathbf{M}_e(r < a) = 0 \), while there is a nonzero surface density of effective magnetic charge, \(\sigma_{e,\text{eff}}(r = a) = \mathbf{M}_e \cdot \hat{\mathbf{r}} = \mathbf{M}_e \cos \theta \).

(33)
The boundary condition on the magnetic field \(\mathbf{H}_e \) at the surface of the sphere is that

\[
\mathbf{H}_{e,r}(r = a^+) - \mathbf{H}_{e,r}(r = a^-) = \sigma_{e,\text{eff}}(r = a),
\]

(34)
and hence,

\[
\mathbf{H}_{e,r}(r = a^-) = \mathbf{H}_{e,r}(r < a) = \mathbf{H}_e(r < a) \cos \theta = \mathbf{H}_{e,r}(r = a^+) - \sigma_{e,\text{eff}}(r = a)
\]

\[
= \frac{2M_e \cos \theta}{3} - M_e \cos \theta = -\frac{M_e \cos \theta}{3},
\]

(35)

\[
\mathbf{H}_e(r < a) = -\frac{M_e}{3}, \quad \mathbf{H}_m(r < a) = \frac{\mathbf{B}(r < a)}{\mu_0} = \mathbf{H}_e(r < a) + \mathbf{M}_e(r < a) = \frac{2M_e}{3}.
\]

(36)
The result (36) for \(\mathbf{B}/\mu_0 \) implies that the magnetic field for the idealization of a “point,” “effective” (Amp\`erian) magnetic dipole \(\mathbf{m}_e \) would be

\[
\mathbf{B} = \frac{3(\mathbf{m}_e \cdot \hat{\mathbf{r}})\hat{\mathbf{r}} - \mathbf{m}_e}{4\pi r^3} + \frac{2\mathbf{m}_e}{3} \delta^3(\mathbf{r}).
\]

(37)

A.1.2 Uniform Gilbertian Magnetization Density \(M_m \)

The total magnetic moment of the sphere for this case is

\[
\mathbf{m}_m = \frac{4\pi M_m a^3}{3}.
\]

(38)

As in sec. D.1.1, we speed up the derivation by noting that the fields inside the sphere are uniform, and the fields outside the sphere are the same as those of a point magnetic dipole of strength \(\mathbf{m}_m \),

\[
\frac{\mathbf{B}(r > a)}{\mu_0} = \mathbf{H}_e(r > a) = \mathbf{H}_m(r > a) = \frac{3(\mathbf{m}_m \cdot \hat{\mathbf{r}})\hat{\mathbf{r}} - \mathbf{m}_e}{4\pi r^3} = \frac{M_m a^3 (2 \cos \theta \hat{\mathbf{r}} - \sin \theta \hat{\theta})}{3r^3}.
\]

(39)
To characterize the fields inside the sphere, we note use the method of effective magnetic charges (Appendix A). Since \mathbf{M}_m is constant inside the sphere, there is no net true magnetic charge density there, $\rho_m(r < a) = -\nabla \cdot \mathbf{M}_m(r < a) = 0$, while there is a nonzero surface density of true magnetic charge,

$$\sigma_m(r = a) = \mathbf{M}_m \cdot \hat{\mathbf{r}} = M_m \cos \theta.$$ (40)

The boundary condition on the magnetic field \mathbf{B} at the surface of the sphere is that

$$B_r(r = a^+) - B_r(r = a^-) = \mu_0 \sigma_m(r = a),$$ (41)

and hence,

$$B_r(r = a^-) = \frac{B_r(r < a)}{\mu_0} = \frac{B(r < a) \cos \theta}{\mu_0} = \frac{B_r(r = a^+)}{\mu_0} - \sigma_r(r = a)$$

$$= \frac{2M_m \cos \theta}{3} - M_m \cos \theta = -\frac{M_m \cos \theta}{3},$$ (42)

$$\frac{\mathbf{B}(r < a)}{\mu_0} = \mathbf{H}(r < a) = -\frac{M_m}{3}, \quad \mathbf{H}_m(r < a) = \frac{\mathbf{B}(r < a)}{\mu_0} + \mathbf{M}_m(r < a) = \frac{2\mathbf{M}_m}{3}. \quad (43)$$

Comparing with eqs. (35)-(36) we see that the roles of \mathbf{B} and \mathbf{H} are reversed in the case of uniform true and effective magnetization. In particular, the sign of \mathbf{B} inside the magnetized sphere is opposite for the cases of Ampèrian and Gilbertian magnetization, although \mathbf{B} is the same outside the sphere in the two cases.\(^{20}\)

The result (43) for \mathbf{B}/μ_0 implies that the magnetic field for the idealization of a “point,” “true” (Gilbertian) magnetic dipole \mathbf{m}_m would be

$$\frac{\mathbf{B}}{\mu_0} = \frac{3(\mathbf{m}_m \cdot \hat{\mathbf{r}})\hat{\mathbf{r}} - \mathbf{m}_m}{4\pi r^3} - \frac{\mathbf{m}_m}{3} \delta^3(\mathbf{r}).$$ (44)

B Appendix: Lorentz Transformations of the Fields

The various electromagnetic fields can be embedded in antisymmetric 4-tensors (six vectors) that obey Lorentz transformations. The microscopic fields \mathbf{E} and \mathbf{B} can be written as components of the tensor \mathbf{F}, and of its dual \mathbf{F}^* obtained by the transformation $\mathbf{E} \rightarrow c\mathbf{B}$, $c\mathbf{B} \rightarrow -\mathbf{E}$.\(^{21}\)

$$\mathbf{F} = \begin{pmatrix} 0 & E_x & E_y & E_z \\ -E_x & 0 & -cB_z & cB_y \\ -E_y & cB_z & 0 & -cB_x \\ -E_z & -cB_y & cB_x & 0 \end{pmatrix}, \quad \mathbf{F}^* = \begin{pmatrix} 0 & cB_z & cB_y & cB_x \\ -cB_y & 0 & E_z & -E_y \\ -cB_z & -E_z & 0 & E_x \\ -cB_x & E_y & -E_x & 0 \end{pmatrix},$$ (45)

\(^{20}\)For the case of a cylinder with uniform transverse magnetization, see [57], where the interior \mathbf{B} field is equal and opposite for Ampèrian and Gilbertian magnetization.

\(^{21}\)The terminology that the electromagnetic field tensor \mathbf{F}^* is the dual of the field tensor \mathbf{F} was introduced by Minkowski, eq. (35) of [53].
such that the fields in the ′ frame where the frame of eq. (45) has velocity \(\mathbf{v} \) are

\[
E' = \gamma \left(\mathbf{E} - \frac{\mathbf{v}}{c} \times \mathbf{cB} \right) - (\gamma - 1)(\hat{\mathbf{v}} \cdot \mathbf{E})\hat{\mathbf{v}},
\]

\[
c\mathbf{B}' = \gamma \left(\mathbf{cB} + \frac{\mathbf{v}}{c} \times \mathbf{E} \right) - (\gamma - 1)(\hat{\mathbf{v}} \cdot \mathbf{cB})\hat{\mathbf{v}}.
\]

(46)

(47)

The densities of Ampérian electric and magnetic dipole moments \(\mathbf{P}_e \) and \(\mathbf{M}_e \) comprise the tensor \(\mathbf{P}_e \), as first noted by Lorentz [58],

\[
\mathbf{P}_e = \begin{pmatrix}
0 & P_{e,x} & P_{e,y} & P_{e,z} \\
-P_{e,x} & 0 & M_{e,z}/c & -M_{e,y}/c \\
-P_{e,y} & -M_{e,z}/c & 0 & M_{e,x}/c \\
-P_{e,z} & M_{e,y}/c & -M_{e,x}/c & 0
\end{pmatrix},
\]

(48)

such that the fields in the ′ frame where the frame of eq. (48) has velocity \(\mathbf{v} \) are

\[
\mathbf{P}'_e = \gamma \left(\mathbf{P}_e + \frac{\mathbf{v}}{c} \times \frac{\mathbf{M}_e}{c} \right) - (\gamma - 1)(\hat{\mathbf{v}} \cdot \mathbf{P}_e)\hat{\mathbf{v}},
\]

\[
\frac{\mathbf{M}'_e}{c} = \gamma \left(\frac{\mathbf{M}_e}{c} - \frac{\mathbf{v}}{c} \times \mathbf{P}_e \right) - (\gamma - 1) \left(\hat{\mathbf{v}} \cdot \frac{\mathbf{M}_e}{c} \right)\hat{\mathbf{v}}.
\]

(49)

(50)

The macroscopic fields \(\mathbf{D}_e = \epsilon_0 \mathbf{E} + \mathbf{P}_e \) and \(\mathbf{H}_e = \mathbf{B}/\mu_0 - \mathbf{M}_e \) can be written as components of the tensor \(\mathbf{G}_e \),

\[
\mathbf{G}_e = \epsilon_0 \mathbf{F} + \mathbf{P}_e = \begin{pmatrix}
0 & D_{e,x} & D_{e,y} & D_{e,z} \\
-D_{e,x} & 0 & -H_{e,z}/c & H_{e,y}/c \\
-D_{e,y} & H_{e,z}/c & 0 & -H_{e,x}/c \\
-D_{e,z} & -H_{e,y}/c & H_{e,x}/c & 0
\end{pmatrix},
\]

(51)

such that the fields in the ′ frame where the frame of eq. (51) has velocity \(\mathbf{v} \) are

\[
\mathbf{D}'_e = \gamma \left(\mathbf{D}_e - \frac{\mathbf{v}}{c} \times \frac{\mathbf{H}_e}{c} \right) - (\gamma - 1)(\hat{\mathbf{v}} \cdot \mathbf{D}_e)\hat{\mathbf{v}},
\]

\[
\frac{\mathbf{H}'_e}{c} = \gamma \left(\frac{\mathbf{H}_e}{c} + \frac{\mathbf{v}}{c} \times \mathbf{D}_e \right) - (\gamma - 1) \left(\hat{\mathbf{v}} \cdot \frac{\mathbf{H}_e}{c} \right)\hat{\mathbf{v}}.
\]

(52)

(53)

The densities of Gilbertian electric and magnetic dipole moments \(\mathbf{P}_m \) and \(\mathbf{M}_m \) comprise the tensor \(\mathbf{P}_m \),

\[
\mathbf{P}_m = \begin{pmatrix}
0 & P_{m,x} & P_{m,y} & P_{m,z} \\
-P_{m,x} & 0 & M_{m,z}/c & -M_{m,y}/c \\
-P_{m,y} & -M_{m,z}/c & 0 & M_{m,x}/c \\
-P_{m,z} & M_{m,y}/c & -M_{m,x}/c & 0
\end{pmatrix},
\]

(54)
such that the fields in the ′ frame where the frame of eq. (54) has velocity v are

\begin{align*}
 P'_m &= \gamma \left(P_m + \frac{v}{c} \times \frac{M_m}{c} \right) - (\gamma - 1) (\hat{v} \cdot P_m) \hat{v}, \\
 M'_m &= \gamma \left(\frac{M_m}{c} - \frac{v}{c} \times P_m \right) - (\gamma - 1) \left(\hat{v} \cdot \frac{M_m}{c} \right) \hat{v},
\end{align*}

(55) \hspace{1cm} (56)

Finally, the macroscopic fields $D_m = E/\mu_0 - c^2 P_m$ and $H_m = B/\mu_0 + M_m$ can be written as components of the tensor G_m,

$$
G_m = \frac{F}{\mu_0} - c^2 P_m = \begin{pmatrix}
0 & D_{m,x} & D_{m,y} & D_{m,z} \\
-D_{m,x} & 0 & -cH_{m,z} & cH_{m,y} \\
-D_{m,y} & cH_{m,z} & 0 & -cH_{m,x} \\
-D_{m,z} & -cH_{m,y} & cH_{m,x} & 0
\end{pmatrix},
$$

(57)

such that the fields in the ′ frame where the frame of eq. (57) has velocity v are

\begin{align*}
 D'_m &= \gamma \left(D_m - \frac{v}{c} \times cH_m \right) - (\gamma - 1) (\hat{v} \cdot D_m) \hat{v}, \\
 cH'_m &= \gamma \left(cH_m + \frac{v}{c} \times D_m \right) - (\gamma - 1) (\hat{v} \cdot cH_m) \hat{v}.
\end{align*}

(58) \hspace{1cm} (59)

If we accept that the forces on electric and magnetic charges q_e and q_m in their rest frame are

$$
F_e = \mu_0 q_e D_m, \quad F_m = \mu_0 q_m H_e,
$$

(60)

as in eq. (8), then we see by inverting eqs. (53) and (58) that the Lorentz forces in a frame where the charges have velocity v are as in eqs. (17)-(18).

\section{Appendix: Momentum Density and Stress Tensor}

We can extend an argument of Minkowski \cite{53} as to field momentum by considering the total force density on electromagnetic media, following eqs. (17)-(18),

$$
f = f_e + f_m = \mu_0 (\tilde{\rho}_e D_m + \tilde{J}_e \times H_m) + \mu_0 (\tilde{\rho}_m H_e - \tilde{J}_m \times D_e) = \frac{dp_{\text{mech}}}{dt},
$$

(61)

where p_{mech} is the density of mechanical momentum in the media. Using the Maxwell equations (5) for the macroscopic fields,

$$
\frac{dp_{\text{mech}}}{dt} = \mu_0 \left[D_m (\nabla \cdot D_e) - H_m \times (\nabla \times H_e) + H_m \times \frac{\partial D_e}{\partial t} \right] + \mu_0 \left[H_e (\nabla \cdot H_m) - D_e \times (\nabla \times D_m) - D_e \times \frac{\partial H_m}{\partial t} \right]
$$
\[\begin{align*}
\frac{\partial}{\partial t} (\mu_0 \mathbf{D}_e \times \mathbf{H}_m) + \mu_0 [\mathbf{D}_m (\nabla \cdot \mathbf{D}_e) + \mathbf{H}_e (\nabla \cdot \mathbf{H}_m) & - \mathbf{D}_e \times (\nabla \times \mathbf{D}_m) - \mathbf{H}_m \times (\nabla \times \mathbf{H}_e)] \\
= - \frac{\partial \mathbf{p}_{EM}}{\partial t} + \nabla \cdot \mathbf{T}_{EM},
\end{align*} \]

where

\[\mathbf{p}_{EM} = \mu_0 \mathbf{D}_e \times \mathbf{H}_m \]

is the density of momentum associated with the electromagnetic field, and for linear media,\(^{22}\)

\[\mathbf{T}_{EM,ij} = \mu_0 \left[D_{m,i} D_{e,j} + H_{e,i} H_{m,j} - \delta_{ij} \frac{D_e \cdot D_m + H_e \cdot H_m}{2} \right] \]

is the symmetric Maxwell stress 3-tensor associated with the electromagnetic fields. To arrive at eq. (64) we note that for linear media,

\[\left[\mathbf{D}_m (\nabla \cdot \mathbf{D}_e) - \mathbf{D}_e \times (\nabla \times \mathbf{D}_m) \right]_i = D_{m,i} \frac{\partial D_{e,j}}{\partial x_j} - D_{e,j} \frac{\partial D_{m,i}}{\partial x_j} + D_{e,j} \frac{\partial D_{m,i}}{\partial x_j} \]

\[= \frac{\partial}{\partial x_j} \left[D_{m,i} D_{e,j} - \delta_{ij} \frac{D_e \cdot D_m}{2} \right]. \]

D Appendix: Electromagnetic Duality

D.1 Microscopic Electrodynamics

As noted at the beginning of Appendix B, Minkowski [53] introduced the duality transformation

\[\mathbf{E} \rightarrow c \mathbf{B}, \quad c \mathbf{B} \rightarrow -\mathbf{E}, \]

as a useful construct when discussing Maxwell’s equation in 4-tensor notation. The microscopic form of Maxwell’s equation, eq. (1), is symmetric (invariant) under this transformation if in addition all electric charges are replaced by magnetic charges, and \textit{vice versa}.

We now consider the appropriate duality transformation for other quantities than the fields \(\mathbf{E} \) and \(\mathbf{B} \). An important constraint is that such a transformation should relate quantities that have the same dimensions. Now, in SI units electric and magnetic charges do not have the same dimensions, so their duality transformation is not simply \(q_e \leftrightarrow q_m \).

First, we note that in SI units the microscopic density \(u \) of electromagnetic field energy is

\[u = \frac{\epsilon_0 E^2}{2} + \frac{B^2}{2\mu_0}. \]

That is, \(\sqrt{\epsilon_0} \mathbf{E} \) and \(\mathbf{B}/\sqrt{\mu_0} \) have the same dimension, such that \(\mathbf{E} \) and \(\mathbf{B}/\sqrt{\epsilon_0 \mu_0} = c \mathbf{B} \) have the same dimensions. Hence, Minkowski’s duality transformation (66) is indeed between quantities with the same dimensions.

\(^{22}\)See eqs. (81)-(84) for discussion of the linear relations \(\mathbf{E} = \mathbf{D}_e/\epsilon_e = \mathbf{D}_m/\epsilon_m \) and \(\mathbf{B} = \mu_e \mathbf{H}_e = \mu_m \mathbf{H}_m \).
We then rewrite the first two Maxwell equations (1) as

\[\nabla \cdot \sqrt{\epsilon_0} \mathbf{E} = \frac{\rho_e}{\sqrt{\epsilon_0}}, \quad \nabla \cdot \frac{\mathbf{B}}{\sqrt{\mu_0}} = \sqrt{\mu_0} \rho_m, \]

(68)

which indicates that in SI units \(\rho_e / \sqrt{\epsilon_0} \) has the same dimensions as \(\sqrt{\mu_0} \rho_m \), i.e., that \(q_e \) and \(q_m / c \) have the same dimensions. Thus, the duality transformation for charges is\(^{23}\)

\[q_e \rightarrow \frac{q_m}{c}, \quad \frac{q_m}{c} \rightarrow -q_e. \]

(69)

This is consistent with the microscopic force laws (9)-(10),

\[\mathbf{F}_e = q_e \left(\mathbf{E} + \frac{\mathbf{v}}{c} \times \mathbf{c} \mathbf{B} \right), \quad \mathbf{F}_m = \frac{q_m}{c} \left(c \mathbf{B} - \frac{\mathbf{v}}{c} \times \mathbf{E} \right), \]

(70)

whose duality transformation is

\[\mathbf{F}_e \leftrightarrow \mathbf{F}_m. \]

(71)

For completeness, we note that the third and fourth Maxwell equations (1) can be written as

\[- \nabla \times \mathbf{E} = \frac{\partial}{\partial ct} (c \mathbf{B}) + \mu_0 c \frac{\mathbf{J}_m}{c}, \quad \nabla \times c \mathbf{B} = \frac{\partial \mathbf{E}}{\partial ct} + \mu_0 c \mathbf{J}_e, \]

(72)

which are consistent with the duality transformations (66) and (69).

One should not (in this author’s view) say that the constants \(\epsilon_0 \) and \(\mu_0 \) (which have different dimensions) are duals of one another. Indeed, since \(\epsilon_0 \mu_0 = 1/c^2 \), they are not independent quantities, and electrodynamics could be formulated using only one of them (along with the universal constant \(c \)). For example, the static force between two like electric charges separated by distance \(r \) is \(\mathbf{F}_e = \frac{q_e^2}{4\pi \epsilon_0 r^2} \), while the force between two magnetic charges is \(\mathbf{F}_m = \mu_0 \frac{q_m^2}{4\pi r^2} + \mu_0 \frac{q_m^2}{4\pi r^2} = (\mu_0 c / c^2)^2 / 4\pi \epsilon_0 r^2 \), such that the duality relation (69) leads to the relation (71) without any “duality relation” between \(\epsilon_0 \) and \(\mu_0 \).

D.2 Macroscopic Electrodynamics

In macroscopic electrodynamics we consider media with densities \(\mathbf{P}_e \) of electric dipoles and \(\mathbf{M}_e \) of (Amp`erian) magnetic moments due to electrical currents. As the dual of electric charge \(q_e \) is magnetic charge divided by \(c \), \(q_m / c \), the dual of \(\mathbf{P}_e \) is a density \(\mathbf{M}_m / c \) of (Gilbertian) magnetic dipoles due to pairs of opposite magnetic charges, divided by \(c \). Similarly, the dual of \(\mathbf{M}_e \) is proportional to a density \(\mathbf{P}_m \) of (Gilbertian) electric dipoles due to currents of magnetic charges.

Historically, the electric densities \(\mathbf{P}_e \) and \(\mathbf{M}_e \) were incorporated in the macroscopic fields \(\mathbf{D} = \epsilon_0 \mathbf{E} + \mathbf{P}_e \) and \(\mathbf{H} = \mathbf{B} / \mu_0 - \mathbf{M}_e \) such that \(\mathbf{H} / c = \epsilon_0 c \mathbf{B} - \mathbf{M}_e / c \). While we say that \(c \mathbf{B} \) is

\(^{23}\)If only electric charges exist in Nature (as is the case so far as we know), the duality transformations (66) and (69) have the somewhat trivial application that we could redefine electric fields to be magnetic fields, and vice versa, call all charges magnetic, and say that electric charges do not exist.
the dual of \(\mathbf{E} \), it is not the case that \(\sqrt{\mu_0/\varepsilon_0}\mathbf{H} \) is the dual of \(\mathbf{E} \) (nor is \(\mathbf{B} \) the dual of \(\sqrt{\mu_0/\varepsilon_0}\mathbf{D} \), as claimed in sec. 6.11 of [32]). Rather, we see that duality requires the introduction of a second \(\mathbf{D} \) and a second \(\mathbf{H} \) field according to eq. (4),

\[
\begin{align*}
\mathbf{D}_e &= \varepsilon_0 \mathbf{E} + \mathbf{P}_e, \\
\mathbf{H}_e &= \frac{\mathbf{B}}{\mu_0} - \mathbf{M}_e, \\
\mathbf{D}_m &= \frac{\mathbf{E}}{\mu_0} - c^2 \mathbf{P}_m, \\
\mathbf{H}_m &= \frac{\mathbf{B}}{\mu_0} + \mathbf{M}_m,
\end{align*}
\]

(73)

with the duality transformations

\[
\begin{align*}
c \mathbf{P}_e &\to \mathbf{M}_m, \\
c \mathbf{M}_e &\to -c \mathbf{P}_m, \\
c \mathbf{P}_m &\to \mathbf{M}_e, \\
c \mathbf{M}_m &\to -c \mathbf{P}_e,
\end{align*}
\]

(74)

\[
\begin{align*}
c \mathbf{D}_e &\to \mathbf{H}_m, \\
c \mathbf{H}_e &\to -\mathbf{D}_m, \\
\mathbf{D}_m &\to c \mathbf{H}_e, \\
\mathbf{H}_m &\to -c \mathbf{D}_e.
\end{align*}
\]

(75)

A consequence of the minus signs in eq. (74) is that while the Ampèrian magnetic dipole moment \(\mathbf{m}_e \) associated with electric current density \(\mathbf{J}_e \) is

\[
\mathbf{m}_e = \int \frac{\mathbf{r} \times \mathbf{J}_e}{2} \, d\text{Vol} \to I_e \text{Area},
\]

(76)

the Gilbertian electric dipole moment \(\mathbf{p}_m \) associated with magnetic current density \(\mathbf{J}_m \) is

\[
\mathbf{p}_m = -\int \frac{\mathbf{r} \times \mathbf{J}_m}{2} \, d\text{Vol} \to -I_m \text{Area}.
\]

(77)

The macroscopic force densities and their duality relation are

\[
\mathbf{f}_e = \mu_0 (\tilde{\rho}_e \mathbf{D}_m + \tilde{\mathbf{J}}_e \times \mathbf{H}_m), \quad \mathbf{f}_m = \mu_0 (\tilde{\rho}_m \mathbf{H}_e - \tilde{\mathbf{J}}_m \times \mathbf{D}_e), \quad \mathbf{f}_e \leftrightarrow \mathbf{f}_m.
\]

(78)

The Poynting vector is

\[
\mathbf{S} = \mu_0 \mathbf{D}_m \times \mathbf{H}_e \quad \text{(all media)},
\]

(79)

and for linear media in which \(\mathbf{D}_e \) and \(\mathbf{D}_m \) are both proportional to \(\mathbf{E} \), and \(\mathbf{H}_e \) and \(\mathbf{H}_m \) are both proportional to \(\mathbf{B} \), the density \(u \) of stored energy associated with the electromagnetic fields is

\[
u = \frac{\mu_0 \mathbf{D}_e \cdot \mathbf{D}_m + \mathbf{H}_e \cdot \mathbf{H}_m}{2} \quad \text{(linear media)}.
\]

(80)

Both \(\mathbf{S} \) and \(u \) are self-dual.

For linear media with polarization densities \(\mathbf{P}_e \) and \(\mathbf{M}_e \) based on electric charges and currents, we can write

\[
\begin{align*}
\mathbf{P}_e &= \varepsilon_0 \chi_{\mathbf{E}} \mathbf{E}, \\
\mathbf{D}_e &= \varepsilon_\mathbf{E} \mathbf{E}, \\
\varepsilon_e &= \varepsilon_0 (1 + \chi_{\mathbf{H}}), \\
\mathbf{M}_e &= \chi_{\mathbf{H}} \mathbf{H}_e, \\
\mathbf{B} &= \mu_\mathbf{E} \mathbf{E}, \\
\mu_e &= \mu_0 (1 + \chi_{\mathbf{H}}),
\end{align*}
\]

(81)

\[
\begin{align*}
\mathbf{P}_m &= \varepsilon_0 \mu_0 \chi_{\mathbf{D}_m} \mathbf{D}_m, \\
\mathbf{D}_m &= \varepsilon_m \mathbf{E}, \\
\varepsilon_m &= \frac{\varepsilon_0 c^2}{1 + \chi_{\mathbf{D}_m}} = \frac{1}{\mu_0 (1 + \chi_{\mathbf{D}_m})}, \\
\mathbf{M}_m &= \chi_{\mathbf{H}_m} \frac{\mathbf{B}}{\mu_0}, \\
\mathbf{B} &= \mu_m \mathbf{H}_m, \\
\mu_m &= \frac{\mu_0}{1 + \chi_{\mathbf{H}_m}}.
\end{align*}
\]

(83)

(84)

However, the permittivities \(\varepsilon \), the permeabilities \(\mu \) and the susceptibilities \(\chi \) do not obey simple duality relations.
D.2.1 Why Does $p_m = -\int r \times J_m \, d\text{Vol}/2c^2$?

As noted in eqs. (76)-(77), the duality transformation (74) contains the prescription that the dual of a magnetic-dipole moment due to electric currents is the negative of an electric-dipole moment due to magnetic currents,

$$m_e \rightarrow -c p_m, \quad (85)$$

which minus sign is perhaps counterintuitive. Now,

$$m_e = \int \frac{r \times J_e}{2} \, d\text{Vol} \rightarrow \int \frac{r \times J_m}{2} \, d\text{Vol}, \quad (86)$$

so eqs. (85)-(86) imply that

$$p_m = -\int \frac{r \times J_m}{2c^2} \, d\text{Vol}, \quad (87)$$

which also is perhaps surprising.

We recall that for a magnetic dipole m_e associated with an electric-current density J_e that flows in a loop, say in a static situation, the Maxwell equation $\nabla \times B = \mu_0 J_e c$ implies that

$$\mu_0 \oint_{\text{loop}} J_e \cdot dl = \oint_{\text{loop}} \nabla \times B \cdot dl = \int_{\text{loop}} B \cdot d\text{Area}. \quad (88)$$

That is, the direction of the magnetic field B at the center of the loop is related to the direction of J_e by the righthand rule, as sketched in the left figure below.

This is consistent with the usual relation

$$m_e = \int \frac{r \times J_e}{2} \, d\text{Vol}. \quad (89)$$

In the case of a loop of magnetic current density J_m, again in a static situation, the Maxwell equation (24), $\nabla \times E = -\mu_0 J_m$, implies that

$$\mu_0 \oint_{\text{loop}} J_m \cdot dl = -\oint_{\text{loop}} \nabla \times E \cdot dl = \int_{\text{loop}} E \cdot d\text{Area}. \quad (90)$$

That is, the direction of the magnetic field E at the center of the loop is related to the direction of J_m by the lefthand rule, as sketched in the right figure above. This is consistent with the relation (87), which is in turn consistent with the duality relation (61),

$$m_e \rightarrow -c p_m.$$
Thus, the difference in sign between the relations (87) and (89) is due to the difference in signs of the terms in the current densities in the Maxwell equations,

\[c^2 \nabla \times \epsilon_0 \mathbf{E} = - \left(\frac{\partial}{\partial t} \frac{\mathbf{B}}{\mu_0} + \mathbf{J}_m \right), \quad \nabla \times \frac{\mathbf{B}}{\mu_0} = \frac{\partial \epsilon_0 \mathbf{E}}{\partial t} + \mathbf{J}_e. \]

(91)

The equation for \(\nabla \times \mathbf{E} \) with magnetic currents was first discussed by Heaviside in 1885 [3]. He argued (p. 448 of [3]) that just as in the equation for \(\nabla \times \mathbf{B} \) where the current density \(\mathbf{J}_e \) and the “displacement current density” \(\partial \epsilon_0 \mathbf{E} / \partial t \) have the same sign, the current density \(\mathbf{J}_m \) and the “magnetic displacement current density” \(\partial (\mathbf{B} / \mu_0) / \partial t \) should have the same sign in the equation for \(\nabla \times \mathbf{E} \).\(^{24}\)

D.3 Gaussian Units

We have already remarked (footnote 10) that some people write the second Maxwell equation as \(\nabla \cdot \mathbf{B} = \rho_m \) in SI units. The macroscopic fields \(\mathbf{D}_m \) and \(\mathbf{H}_m \) could also be defined differently than here. In particular, the definition \(\mathbf{D}_m = \epsilon_0 \mathbf{E} - \mathbf{P}_m \) (which is our \(\mathbf{D}_m \) divided by \(c^2 \)) could be considered, although then the third and fourth Maxwell equations of eq. (5) differ more in their forms.

Gaussian units were developed to have greater symmetry between electric and magnetic quantities, which will carry over into the duality relations in these units. Here, we summarize the main electrodynamic relations in Gaussian units.

The microscopic Maxwell equations in Gaussian units are

\[\nabla \cdot \mathbf{E} = 4\pi \rho_e, \quad \nabla \cdot \mathbf{B} = 4\pi \rho_m, \quad -c \nabla \times \mathbf{E} = \frac{\partial \mathbf{B}}{\partial t} + 4\pi \mathbf{J}_m, \quad c \nabla \times \mathbf{B} = \frac{\partial \mathbf{E}}{\partial t} + 4\pi \mathbf{J}_e, \]

(92)

for which the duality relations are

\[q_e \rightarrow q_m, \quad q_m \rightarrow -q_e, \quad \mathbf{E} \rightarrow \mathbf{B}, \quad \mathbf{B} \rightarrow -\mathbf{E}. \]

(93)

In Gaussian units, electric and magnetic charges have the same dimensions, and electric and magnetic fields have the same dimensions.

The macroscopic fields are

\[\mathbf{D}_e = \mathbf{E} + 4\pi \mathbf{P}_e, \quad \mathbf{H}_e = \mathbf{B} - 4\pi \mathbf{M}_e, \quad \mathbf{D}_m = \mathbf{E} - 4\pi \mathbf{P}_m, \quad \mathbf{H}_m = \mathbf{B} + 4\pi \mathbf{M}_m, \]

(94)

with the duality transformations

\[\mathbf{P}_e \rightarrow \mathbf{M}_m, \quad \mathbf{M}_e \rightarrow -\mathbf{P}_m, \quad \mathbf{P}_m \rightarrow \mathbf{M}_e, \quad \mathbf{M}_m \rightarrow -\mathbf{P}_e, \]

(95)

\[\mathbf{D}_e \rightarrow \mathbf{H}_m, \quad \mathbf{H}_e \rightarrow -\mathbf{D}_m, \quad \mathbf{D}_m \rightarrow \mathbf{H}_e, \quad \mathbf{H}_m \rightarrow -\mathbf{D}_e. \]

(96)

The macroscopic Maxwell equations are

\[\nabla \cdot \mathbf{D}_e = 4\pi \tilde{\rho}_e, \quad \nabla \cdot \mathbf{H}_m = 4\pi \tilde{\rho}_m, \quad -c \nabla \times \mathbf{D}_m = \frac{\partial \mathbf{H}_m}{\partial t} + 4\pi \tilde{\mathbf{J}}_m, \quad c \nabla \times \mathbf{H}_e = \frac{\partial \mathbf{D}_e}{\partial t} + 4\pi \tilde{\mathbf{J}}_e. \]

(97)

\(^{24}\)See also [59].
The microscopic force law on charges is

\[F_e = q_e \left(E + \frac{V}{c} \times B \right), \quad F_m = q_m \left(B - \frac{V}{c} \times E \right), \quad F_e \leftrightarrow F_m, \] (98)

while the macroscopic force densities and their duality relations are

\[f_e = \tilde{\rho}_e \mathbf{D}_m + \frac{\tilde{J}_e}{c} \times \mathbf{H}_m, \quad f_m = \tilde{\rho}_m \mathbf{H}_e - \frac{\tilde{J}_m}{c} \times \mathbf{D}_e, \quad f_e \leftrightarrow f_m. \] (99)

The Poynting vector is

\[S = \frac{\mathbf{D}_m \times \mathbf{H}_e}{4\pi c} \quad \text{(all media),} \] (100)

and for linear media in which \(\mathbf{D}_e \) and \(\mathbf{D}_m \) are both proportional to \(\mathbf{E} \), and \(\mathbf{H}_e \) and \(\mathbf{H}_m \) are both proportional to \(\mathbf{B} \), the density \(u \) of stored energy associated with the electromagnetic fields is

\[u = \frac{\mathbf{D}_e \cdot \mathbf{D}_m + \mathbf{H}_e \cdot \mathbf{H}_m}{8\pi} \quad \text{(linear media).} \] (101)

Both \(S \) and \(u \) are self-dual.

For linear media with polarization densities \(\mathbf{P}_e \) and \(\mathbf{M}_e \) based on electric charges and currents, we can write:\(^{25}\)

\[\mathbf{P}_e = \chi \mathbf{D}_e, \quad \mathbf{D}_e = \epsilon \mathbf{E}, \quad \epsilon = 1 + 4\pi \chi \mathbf{H}_e, \] (102)

\[\mathbf{M}_e = \chi \mathbf{H}_e, \quad \mathbf{B} = \mu \mathbf{E}, \quad \mu = 1 + 4\pi \chi \mathbf{H}_e, \] (103)

such that \(\epsilon \) and \(\mu \) revert to unity in the absence of magnetic charges and currents. To have the corresponding relations for polarization densities \(\mathbf{P}_m \) and \(\mathbf{M}_m \) based on magnetic charges and currents obey forms similar to eqs. (102)-(103) for linear media, we use,

\[\mathbf{P}_m = \chi \mathbf{D}_m, \quad \mathbf{D}_m = \epsilon \mathbf{E}, \quad \epsilon = \frac{1}{1 + 4\pi \chi \mathbf{D}_m}, \] (104)

\[\mathbf{M}_m = \chi \mathbf{H}_m \mathbf{B}, \quad \mathbf{B} = \mu \mathbf{H}_m, \quad \mu = \frac{1}{1 + 4\pi \chi \mathbf{H}_m}. \] (105)

Acknowledgment

Thanks to David Griffiths and Ömer Zor for e-discussions of this problem.

\(^{25}\)For discussion of the effect of the factors of 4\(\pi \) in the conversion of \(\mathbf{D} \) and \(\mathbf{H} \) between SI and Gaussian units, see [60].
References

http://physics.princeton.edu/~mcdonald/examples/EM/poynting_ptrsl_175_343_84.pdf

Also in *Electrical Papers*, Vol. 1 (Macmillan, 1894), p. 447,

A sign error 6 lines before eq. (6) is corrected in http://arxiv.org/pdf/physics/0208007.pdf

Vol. 2, 3rd ed. (Clarendon Press, 1892),

Vol. 1, 3rd ed. (Clarendon Press, 1904),

http://physics.princeton.edu/~mcdonald/examples/EM/lorentz_emw_5_2_145_04.pdf

http://physics.princeton.edu/~mcdonald/examples/EM/robinson_pr_16_313_75.pdf

http://physics.princeton.edu/~mcdonald/examples/EM/heaviside_pm_27_324_89.pdf

http://physics.princeton.edu/~mcdonald/examples/EM/claustius_pm_13_381_82.pdf

[34] K.T. McDonald, *Magnetic Force on a Permeable Wire* (March 17, 2002),

Über die im elektromagnetischen Felde auf ruhende Köpfer ausgeübten ponderomotorischen Kräfte, Ann. Phys. **26**, 541 (1908),

This paper mentions the earlier history of erratic results on this topic.

[58] H.A. Lorentz, Alte und Neue Fragen der Physik, Phys. Z. 11, 1234 (1910),
