The Σ^0-hyperon decays electromagnetically in the mode $\Sigma^0 \rightarrow \Lambda + \gamma$. Show how the relative parity of Σ^0 and Λ determines the multipolarity of the γ-ray emitted. From the polarization vector ϵ of the photon, and the propagation vector k and spin σ of the Λ, deduce the simplest forms for the matrix element for even or odd relative parity. The experimental determination of the Σ-Λ parity has been based on the analysis of the Dalitz decay $\Sigma \rightarrow \Lambda e^+ e^-$. Which of the parity assignments has the steeper distribution in the invariant mass of the $e^+ e^-$ pair?

Sketch the favored orientations of the photon polarization ϵ supposing the Λ spin σ is \perp to the momentum vector k (in Σ^0 rest frame, of course).

The intrinsic parity of the hyperon Ξ^-, of strangeness -2, can in principle be determined from observations on capture in hydrogen from an S-orbit:

$$\Xi^- + p \rightarrow \Lambda + \Lambda.$$

The polarization of the Λ-hyperons can be determined from the asymmetry in the weak decay $\Lambda \rightarrow p + \pi^-$ (see Section 7.7). State what is the polarization (if any) of the Λs produced in the above reaction and how the relative polarizations are determined by the Ξ-parity.

a) Find a relation between the total cross-sections (at a given energy) for the reactions

$$\pi^- p \rightarrow K^0 \Sigma^0,$$

$$\pi^- p \rightarrow K^+ \Sigma^-,$$

$$\pi^+ p \rightarrow K^+ \Sigma^+.$$

b) Deduce through which isospin channels the following reactions may proceed: (a) $K^+ + p \rightarrow \Sigma^0 + \pi^0$, (b) $K^- + p \rightarrow \Sigma^+ + \pi^-$. Find the ratio of cross-sections for (a) and (b), assuming that one or other channel dominates.