1. Deduce the nonrelativistic form factors,

\[F(q^2) = \int \rho(r) e^{i q r} d^3r, \quad (1) \]

for the spherically symmetric charge densities with characteristic radius \(R \),

\[\rho(r) = \begin{cases}
3Q/4\pi R^3 & (r < R), \\
0 & (r > R),
\end{cases} \quad (2) \]

\[\rho(r) = \frac{Q}{4\pi R^2} \delta(r - R), \quad (3) \]

and

\[\rho(r) = \frac{Q}{2\pi \sqrt{2\pi} R^3} e^{-r^2/2R^2}, \quad (4) \]

all of which have total charge \(Q \). Expand these form factors to order \((qR)^2\).

A neutral particle might have charge distributions \(\rho_+ \) and \(\rho_- \) with the above forms, but with different values of the characteristic radii \(R_+ \) and \(R_- \).

The data are often fit to the form,\(^1\)

\[F_n(q^2) = \frac{Q}{[1 + (qR)^2]^n}; \quad (5) \]

with \(n = 2 \). What are the corresponding forms of the charge distributions \(\rho_n(r) \) for \(n = 1, 2 \) and \(3 \)?

2. **Arbitrary 2 \times 2 Unitary Matrices and Pauli Spin Matrices**

This problem concerns operators that act on 2-component spinors. Such operators can be expressed as \(2 \times 2 \) matrices. Operators that preserve the normalization of a state are called **unitary**.

Two of the simplest unitary operators on 2-component spinors are the identify matrix \(I_2 = I \), and the spin-flip operator \(X \) (called the **NOT** operator in quantum computation),

\[I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}. \quad (6) \]

\(^1\)For a review of nucleon form factors, see C.F. Perdrisat et al., *Nucleon electromagnetic form factors*, Prog. Part. Nucl. Phys. 59, 694 (2007),

An arbitrary 2 × 2 unitary matrix \(U \) can be written as
\[
U = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + d \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix},
\]
(7)
where \(a, b, c \) and \(d \) are complex numbers such that \(UU^\dagger = I \). The decomposition (7) is somewhat trivial. Express the general unitary matrix \(U \) as the sum of four unitary matrices, times complex coefficients, of which two are the classical unitary matrices \(I \) and \(X \) given above. Denote the “partner” of \(I \) by \(Z \) and the “partner” of \(X \) by \(Y \) such that
\[
XY = iZ, \quad YZ = iX, \quad ZX = iY.
\]
(8)
You have, of course, rediscovered the so-called Pauli spin matrices,\(^2\)\(^3\)
\[
\sigma_x (= \sigma_1) = X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_y (= \sigma_2) = Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_z (= \sigma_3) = Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.
\]
(9)
As usual, we define the Pauli “vector” \(\sigma \) as the triplet of matrices
\[
\sigma = (\sigma_x, \sigma_y, \sigma_z).
\]
(10)
Show that for ordinary 3-vectors \(a \) and \(b \),
\[
(a \cdot \sigma)(b \cdot \sigma) = (a \cdot b) \, I + i \, \sigma \cdot a \times b.
\]
(11)
With this, show that a general 2 × 2 unitary matrix can be written as
\[
U = e^{i\delta} \left(\cos \frac{\theta}{2} \, I + i \sin \frac{\theta}{2} \, \hat{u} \cdot \sigma \right) = e^{i\delta} e^{i\frac{\theta}{2} \hat{u} \cdot \sigma},
\]
(12)
where \(\delta \) and \(\theta \) are real numbers and \(\hat{u} \) is a real unit vector.\(^4\) By the exponential \(e^O \) of an operator \(O \) we mean the Taylor series \(\sum_n O^n/n! \) where \(O^0 = I \).

What is the determinant of the matrix representation of \(U \)? The subset of 2 × 2 unitary matrices with unit determinant is called the special unitary group \(SU(2) \). What is the version of eq. (12) that describes 2 × 2 special unitary operators?

You may wish to convince yourself of a factoid related to eq. (12), namely that if \(A \) is a square matrix of any order such that \(A^2 = I \), then \(e^{i\theta A} = \cos \theta \, I + i \sin \theta \, A \), provided that \(\theta \) is a real number. It follows that \(A \) can also be written in the exponential form
\[
A = e^{i\pi/2} e^{-i\pi/2} = e^{-i\pi/2} e^{i\pi/2}.
\]
(13)
\(^2\)W. Pauli, Zur Quantenmechanik des magnetischen Elektrons, Z. Phys. 43, 601 (1927),
\(^3\)The Pauli spin matrices (and the unit matrix \(I \)) are not only unitary, they are also hermitian, meaning that they are identical to their adjoints: \(\sigma_j^\dagger = \sigma_j \).
\(^4\)Note that if make the replacements \(\theta \rightarrow -\theta \) and \(\hat{u} \rightarrow -\hat{u} \) we obtain another valid representation of \(U \), since the physical operation of a rotation by angle \(\theta \) about an axis \(\hat{u} \) is identical to a rotation by \(-\theta \) about the axis \(-\hat{u}\).
There are several unitary operators of interest, such as the Pauli matrices, that are their own inverse. If we call such an operator V, then its exponential representation of V can be written in multiple ways,

$$V = e^{i\delta} e^{i\hat{2} \cdot \sigma} = V^{-1} = e^{-i\delta} e^{-i\hat{2} \cdot \sigma}. \quad (14)$$

3. Give the explicit 4×4 matrix form of the four Dirac matrices γ_μ,\(^5\) as well as that for $\gamma_5 = i\gamma_0 \gamma_1 \gamma_2 \gamma_3$, in their representation via the 2×2 Pauli matrices I and σ_i, $i = 1, 2, 3$,

$$\gamma_0 = \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix}, \quad \gamma_i = \begin{pmatrix} 0 & \sigma_i \\ -\sigma_i & 0 \end{pmatrix}, \quad (15)$$

It should be then evident that $\text{tr}(\gamma_\mu) = 0 = \text{tr}(\gamma_5)$, where tr is the trace operator. Then, it immediately follows that $\text{tr}(\phi) = 0$, where $\phi \equiv a^\mu \gamma_\mu$ and a_μ is an arbitrary 4-vector.

Show that

$$\gamma_\mu \gamma_\nu + \gamma_\nu \gamma_\mu = 2\eta_{\mu\nu} I_4, \quad (16)$$

where $\eta_{\mu\nu}$ has diagonal elements $1, -1, -1, -1$ and I_4 is the 4×4 unit matrix,\(^6\) and hence that

$$\text{tr}(\gamma_\mu \gamma_\nu) = 4\eta_{\mu\nu}, \quad \text{and} \quad \text{tr}(\phi \phi) = 4a_\mu b^\mu \equiv 4ab. \quad (17)$$

Show also that

$$\text{tr}(\gamma_\mu \gamma_\nu \gamma_\rho \gamma_\sigma) = 4(\eta_{\mu\rho}\eta_{\nu\sigma} - \eta_{\mu\nu}\eta_{\rho\sigma} + \eta_{\mu\sigma}\eta_{\nu\rho}), \quad (18)$$

and hence that

$$\text{tr}(\phi \phi \phi \phi) = 4[(ab)(cd) - (ac)(bd) + (ad)(bc)]. \quad (19)$$

A factoid which you need not demonstrate is that the Dirac equivalent of eq. (11) is

$$\phi \phi = abI_4 + \frac{a^\mu b^\nu}{2}(\gamma_\mu \gamma_\nu - \gamma_\nu \gamma_\mu). \quad (20)$$

If you think that matrix manipulation is the key to physics, then you might enjoy my course, Physics of Quantum Computation,

\(^5\)The matrices γ_μ were introduced by Dirac in the form used here, but with his γ_4 being our γ_0, in sec. 3 of The Quantum Theory of the Electron, Proc. Roy. Soc. London A 117, 610 (1928),

\(^6\)The matrix I_4 is typically denoted by 1.