1. Use the masses (in MeV) of the first three rows of the baryon decuplet to estimate the masses of the u, d, s quarks, and then predict the mass of the s' particle.

This was the only prediction of the quark model verified between conception in 1963 and the Nobel Prize for it in 1989.

2. The so-called Drell-Yan reactions, $\pi^\pm p \rightarrow \pi^0 \pi^\pm \pi^- X$ are thought to proceed via the elementary reaction $q \bar{q} \rightarrow \mu^+ \mu^-$. If so, predict $\frac{\sigma(\pi^+ p \rightarrow \pi_\mu^+ \pi^- X)}{\sigma(\pi^- p \rightarrow \mu^- \pi_\mu^+ X)}$ at high energies.

3. Estimate the neutron lifetime, due to the decay $n \rightarrow p e^- \bar{\nu}$. The art here is in a good choice of energy scale...

The Equivalence Principle states that the ratio R of inertial to gravitational mass is the same for all substances. It has been tested by comparing the centrifugal force due to the earth's rotation on a body with the gravitational force of the earth (or sun). R is found to be the same for Al and Pt within 1 part in 10^{12}. These experiments also set a limit on the coupling, K_B of any long-range ($1/r^2$) field coupling to baryon number. By considering nuclear binding energies and neutron/proton ratios, show that the difference in baryon number per unit mass in Al and Pt is 4×10^{-4}. Hence show that $K_B/K < 10^{-9}$, where K is the gravitational constant. (For further details, see, for example, Perkins (1984)).

(You may want to peek at chap. 4 of Cottingham & Greenwood.)