Парадокс Г. Иванова.

Kirk T. McDonald,
Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544

1. Парадокс.

Владимир Онучин обратил наше внимание к парадоксу\(^1\), относящемуся к аппарату показанному на рисунке внизу. Два электрических заряда \(-q\) приводятся в равномерное движение по окружности со скоростью \(v\) так, что их азимутальные углы всегда имеют разность фаз 90°. Аппарат, включающий моторы, приводящие в движение отрицательные заряды, укреплен на свободной от трения платформе, так что нет внешних сил, действующих в \((x - y)\) плоскости. Поэтому ожидаются, что центр масс системы будет оставаться в покое. Однако магнитные силы Лоренца движущихся зарядов друг на друга не равны и противоположны по направлению, так что сумма сил не равна нулю. В частности, полная (магнитная) сила Лоренца имеет компоненту в \(-x\) направлении в любой момент времени. Поэтому мы должны заключить, что центр масс системы монotonно ускоряется в этом же направлении за счет внутренних сил, что противоречит принципам Ньютоновой механики.

![Diagram](image)

Сумма (магнитных) сил Лоренца, действующих на два заряда (в Гауссовых единицах) порядка \(q^2\nu^2/c^2r^2\), где \(c\) - скорость света, \(r\) - среднее расстояние между двумя зарядами.

\(^1\) Автором которого является Г. Иванов.
Для любого аппарата, который может быть помещен на лабораторный стол, сила, которая
кажется нарушают законы механики, не больше мала. Но дело в принципе: согласуются ли
законы электромагнетизма с законами механики?

Ампер, Био-Савар и Лоренц.

История парадокса Иванова ведет к Амперу (1822) [1], когда он записал выражение
для силы, действующей между двумя контурами с токами I_1 и I_2

$$F = \frac{I_1 I_2}{c^2} \int \int \left[\frac{1}{r^2} \left(\hat{r} \cdot d l_2 \right) \right] (\hat{r} \cdot d l_1)$$

$$= \nabla \cdot \rho \left(\frac{1}{r^2} \right)$$

(Ampere),

(1)

изменяя более знакомого (в настоящее время) закона Био-Савара (в форме, позднее
записанной Грассманом [3])

$$F = \frac{I_1 I_2}{c^2} \int \int \frac{dl_1}{r^2} \times \hat{r}$$

(Biot – Savart – Grassman),

(2)

поскольку подсмотренный случай в (1), но не в (2), находит все вдоль линии, соединяющей
токовые элементы контуров и неявно полагается, что силы пары токовых элементов друг
относительно друга равны и противоположны. Однако, как отмечено Ампером в 1826 году
[4], закон Био-Савара (2) более согласуется с концепцией магнитного поля,

$$F = \int \frac{I_1 dl_1}{c} \times B$$

$$B = \int \frac{I_1 dl_1}{c} \times \hat{r}$$

(Ampere – Biot – Savart),

(3)

Магнитный член в законы силы Лоренца [5] следует из (3) при замене токового элемента
Idl на qv, где q - заряд, v - его скорость,

$$F = qE + q\frac{v}{c} \times B$$

$$B = q\frac{v}{c} \times \hat{r}$$

(Lorentz).

(4)

Так как уравнение (4) как экстраполяция закона Био-Савара к изолированным токовым
элементам ведёт к кажущемуся противоречию с Ньютоновскими законами механики, то
Ампер предположительно должен был заключить, что изолированные токовые элементы
не могут существовать.

Максвелл сильнее изменил этот взгляд Ампера, так как он рассматривал электрический
заряд как непрерывно распределенную плотность ρ, относящуюся к напряжению в эфире
согласно $\rho = \nabla \cdot D/4\pi$, где D вектор смещения электрического поля.

Электродинамика, в основе которой - заряженные частицы, могла быть развита только
после усилий Томсона [6] и Пойнтинга [7], которые показали, что ЭМ поля могут переносить
энергию и импульс [2]. Сила Лоренца, действующая на заряд, впервые обсуждалась Томсоном
в Гл. 5 [6] - см. обзор Лоренца [10].

Однако сомнения Ампера относительно соответствия силы Лоренца и законами Ньютона
редко в явной форме адресовались к ЭМ теории заряженных частиц, так что примеры,
поскольные примеру Иванова, могут казаться парадоксальными

2 Что движущийся заряд, взаимодействующий с тепловым излучением, должен испытывать
радиационное давление, было предугадано Стивеном в 1871-3 гг. [8], который сделал предположение,
что энергия и импульс заряда должны изменяться. В 1873 г. Максвелл обсуждал давление света на проводящую
среду, находящуюся в состоянии покоя, и на среду, в которой распространяются волны"[9], Гл. 792-793.
3. Сила Лоренца пары зарядов с точностью до $1/c^2$

Статья Пейджка и Адамса [11] предоставляет нам хорошую возможность разрешить парадокс Иванова: с точностью до $1/c^2$ Е и Н поля пары зарядов дают вклад в ненулевую силу Лоренца. Иное рассмотрение дано в Приложении В.

Для вычисления силы Лоренца с точностью до $1/c^2$ достаточно использовать выражение (4) для магнитного поля. Однако, чтобы достичь нужной точности Е поле движущегося заряда должно включать эффекты запаздывания, как это может быть получено из разделения полей Льенара-Вихерта [12, 13] (более детально см. Приложение в [14]),

$$E \approx q \frac{\vv{r}}{r^2} \left(1 + \frac{v^2}{2c^2} - 3\frac{(\vv{r} \cdot \vv{v})^2}{2c^2} \right) - \frac{q}{2c^2r}[\vv{a} + (\vv{a} \cdot \vv{r})\vv{r}],$$

где a - ускорение заряда в текущий момент времени. \(^3\) Тогда полная ЭМ сила F_{EM}, действующая на пару ускоряющихся зарядов, разделенных расстоянием $r = r_2 - r_1$, есть, с точностью до $1/c^2$

$$F_{EM} = -\frac{q_1 q_2}{2c^2r} \left\{ \vv{a}_1 + \vv{a}_2 + [(\vv{a}_1 + \vv{a}_2) \cdot \vv{r}]\vv{r} - \frac{2\vv{r}}{r} (\vv{v}_1 \times \vv{v}_2) \right\}$$

где тройное векторное произведение описывает эффект магнитного поля.

В примере Иванова, где имеется круговое движение, $v_1 = v_2 = v$ и $a_1 = a_2 = v^2/R$, и R - радиус окружности, который меньше, чем расстояние r между двумя зарядами. Потому наибольший вклад в полную ЭМ силу даёт электрическое поле, создаваемое ускорениями частиц, но не магнитное поле. Кроме того, часть силы Лоренца, создаваемая ускорениями, оципллнторного типа, и это является ключевым элементом в разрежении парадокса Иванова.

Может быть полезно рассказать (6) более подробно для примера Иванова, приняв расстояние между двумя вращающимися дисками (на ободах которых закреплены отрицательные заряды) за D, $D \ll R$. Мы рассчитаем силу (6) с точностью до R/D.

Положения, скорости и ускорения двух зарядов могут быть записаны как:

$$\vv{r}_1 = R \sin \frac{vt}{R} \vv{x} + R \cos \frac{vt}{R} \vv{y}, \quad \vv{r}_2 = D \vv{y} + R \cos \frac{vt}{R} \vv{x} - R \sin \frac{vt}{R} \vv{y},$$

$$\vv{v}_1 = v \cos \frac{vt}{R} \vv{x} - v \sin \frac{vt}{R} \vv{y}, \quad \vv{v}_2 = -v \sin \frac{vt}{R} \vv{x} - v \cos \frac{vt}{R} \vv{y},$$

$$\vv{v}_1 = -\frac{v^2}{R} \sin \frac{vt}{R} \vv{x} - \frac{v^2}{R} \cos \frac{vt}{R} \vv{y}, \quad \vv{v}_2 = -\frac{v^2}{R} \cos \frac{vt}{R} \vv{x} + \frac{v^2}{R} \sin \frac{vt}{R} \vv{y},$$

Для этого примера члены в (6), содержащие скорости - порядка R/D, умноженные на главные члены в ускорениях. Поэтому чтобы обесценить точность порядка R/D, достаточно

\(^3\) Выражение (5) может быть преобразовано в выражение более привычного вида для части электрического поля, который меняется с расстоянием как $1/r$, то есть $-q[a_\perp/c^2]_{ret} = -q[(\vv{a} - (\vv{a} \cdot \vv{r})\vv{r})/c^2r]_{ret}$, с ускорением, вычисляемым в запаздывающем времени $t' = t - r/c$.

3
аппроксимировать $r \approx D$ и $\hat{r} \approx \hat{y}$ в членах, содержащих скорость. Однако мы должны сохранить первые поправки к r и \hat{r} в членах, содержащих ускорения. Тогда мы запишем

$$
\mathbf{r} = \mathbf{r}_2 - \mathbf{r}_1 = D \left[\hat{\mathbf{y}} + \frac{R}{D} \left(\cos \frac{vt}{R} - \sin \frac{vt}{R} \right) \hat{\mathbf{x}} - \frac{R}{D} \left(\cos \frac{vt}{R} + \sin \frac{vt}{R} \right) \hat{\mathbf{y}} \right],
$$

$$
\frac{1}{r} = \frac{1}{D \sqrt{1 - \frac{2R}{D} \left(\cos \frac{vt}{R} + \frac{v^2}{R^2} \right) + \frac{2R^2}{D^2}}} \approx \frac{1}{D} \left[1 + \frac{R}{D} \left(\cos \frac{vt}{R} + \sin \frac{vt}{R} \right) \right],
$$

$$
\hat{\mathbf{r}} = \frac{\mathbf{r}}{r} \approx \hat{\mathbf{y}} + \frac{2R}{D} \left(\cos \frac{vt}{R} - \sin \frac{vt}{R} \right) \hat{\mathbf{x}},
$$

$$
a_1 + a_2 + \left[\left(a_1 + a_2 \right) \cdot \hat{\mathbf{r}} \right] \frac{\mathbf{r}}{r} \approx -\frac{v^2}{2D} \left[\left(\cos \frac{vt}{R} + \frac{v^2}{R^2} \right) \hat{\mathbf{x}} + 2 \left(\cos \frac{vt}{R} - \sin \frac{vt}{R} \right) \hat{\mathbf{y}} \right]
$$

$$
\approx -\frac{v^2}{D} \hat{\mathbf{x}} + \frac{3R}{D} \cos \frac{2vt}{R} \hat{\mathbf{y}},
$$

$$
\hat{\mathbf{r}} \left[v_1^2 - v_2^2 - 3(\hat{\mathbf{r}} \cdot \mathbf{v}_1)^2 + 3(\hat{\mathbf{r}} \cdot \mathbf{v}_2)^2 \right] \approx -\frac{v^2}{D^2} \frac{2vt}{R} \hat{\mathbf{x}},
$$

и мы обнаруживаем, что (6) может быть аппроксимировано как

$$
\mathbf{F}_{\text{тр}} \approx \frac{q_1 q_2}{2DRc^2} \left[\left(\cos \frac{vt}{R} + \frac{v^2}{R^2} \right) \hat{\mathbf{x}} + 2 \left(\cos \frac{vt}{R} - \sin \frac{vt}{R} \right) \hat{\mathbf{y}} \right] + \frac{6R}{D} \cos \frac{2vt}{R} \hat{\mathbf{y}}.
$$

Магнитная сила (15) уничтожается поправкой порядка R/D к электрической силе, обусловленной ускорением зарядов, как это видно из (13). Так что наиболее драматичный аспект парадокса разрешен - полная ЭМ сила описывает анизотропного типа. Однако, результирующая ЭМ сила (16), действующая на (изолированную) систему ненулевая, так что остаётся парадокс Ампера, заключающийся в том, что третий закон Ньютона не выполняется для силы Лоренца, действующей между парой движущихся зарядов.

4. Электромагнитный импульс.

Следуя Пойнтингу [7], мы теперь рассмотрим импульс ЭМ поля, вычисляемый по формуле

$$
\mathbf{P} = \frac{1}{4\pi c} \int [\mathbf{E} \times \mathbf{B}] \, dVol
$$

Однако мы не можем отделить "собственный импульс" $\int [\mathbf{E} \times \mathbf{B}] \, dV/4\pi c$ от механического импульса частицы j. Скорее нам надо рассматривать импульс взаимодействия

$$
\mathbf{P} = \frac{1}{4\pi c} \int \{ [\mathbf{E}_1 \times \mathbf{B}_2] + [\mathbf{E}_2 \times \mathbf{B}_1] \} \, dVol
$$

[^4]: Хенсейд независимо ввел в 1885 [16] то, что теперь называется вектором Пойнтинга, используя изобретенные им в 1882 современные обозначения векторов [17]. Двойная роль вектора Пойнтинга, как потока энергии и плотности ЭМ импульса была впервые отмечена Абрахамом [18].

[^5]: С точностью до: $1/v^2$ механический импульс частицы с массой покоя m и скоростью v есть $\mathbf{P}_{\text{мех}} = m(v + v^2/c^2)$. Использование этой формулы в уравнениях движения (20) включает эффекты электромагнитного "собственного импульса".
Сохранив только члены порядка $1/e^2$, мы получаем для соответствующего ЭМ импульса [11]

$$\mathbf{P}_{EM} = \frac{q_1 q_2}{4\pi c^2} \int \frac{[\mathbf{r}_2 \times [\mathbf{v}_1 \times \mathbf{r}_1]] + [\mathbf{r}_1 \times [\mathbf{v}_2 \times \mathbf{r}_2]]}{r_1^2 r_2^2} \, dV = \frac{q_1 q_2}{2c^2 r} \left[\mathbf{v}_1 + \mathbf{v}_2 + \left((\mathbf{v}_1 + \mathbf{v}_2) \cdot \hat{r}\right) \hat{r} \right].$$

(19)

В то время как, строго говоря, ЭМ импульс есть присущ всей системе как целое, члены в (19), содержащие \mathbf{v}_j, могут быть идентифицированы как импульс взаимодействия, присущий частице j.

Взяв производную по времени от (19), мы обнаруживаем, что

$$\frac{d \mathbf{P}_{EM}}{dt} = -\mathbf{F}_{EM},$$

(20)

сравнением этой производной с (6). Таким образом, вычисление ЭМ импульса согласно уравнения (18) и (19) дает нам решение уравнения (20) 6

5. Два заряда, на которые не действуют внешние силы.

Если два заряда взаимодействуют между собой только через ЭМ силы, то их второй закон Ньютона для них

$$\frac{d \mathbf{P}_{mech}}{dt} = \mathbf{F}_{EM},$$

(22)
где \mathbf{P}_{mech} общий механический импульс зарядов. Тогда в соответствии с (20) мы запишем

$$\frac{d \mathbf{P}_{total}}{dt} = \frac{d \mathbf{P}_{mech}}{dt} + \frac{d \mathbf{P}_{EM}}{dt}.$$

(23)

В этом случае центр масс двух частиц может двигаться под действием их сил Лоренца, но центр импульса системы остается фиксированным (или пребывает в равномерном движении).

6. Разрешение парадокса Иванова.

Возвращаясь к примеру Иванова, в котором два заряда приведены в движение по кругу, мы обнаруживаем, что кроме силы Лоренца имеются и другие силы. Движение и следовательно механический импульс \mathbf{P}_{mech} зарядов, изменение этого импульса и полная

$$\mathbf{F}_{EM} = \oint \mathbf{T} \cdot d\mathbf{A} - \frac{1}{4\pi c \, dt} \int \left(\mathbf{E} \times \mathbf{B}\right) \, dV$$

(21)

где \mathbf{T} тензор напряжений Максишлера. См. например Гл. 10 [10]. Для связанной системы зарядов, для которой можно пренебречь излучением, интеграл напряжений исчезает по мере того, как площадь/объем интегрирования растет, что приводит к (20). В данном случае, который выполнен с точностью до $1/e^2$, излучением можно пренебречь, поскольку излучательные эффекты порядка $1/e^3$ согласно формуле Лармора $dU/dt = 2q^2 a^2 / 3c^3$.

5
сила $\mathbf{F}_{\text{total}}$, действующая на заряда, известны (в первом приближении), так что мы запишем

$$\frac{d\mathbf{P}_{\text{mech}}}{dt} = \mathbf{F}_{\text{total}} = \mathbf{F}_{\text{EM}} + \mathbf{F}_{\text{other}}.$$ \hfill (24)

Также мы должны рассмотреть возможное движение поддерживающей площадки, на которую действует сила реакции $-\mathbf{F}_{\text{other}}$, исходя из предположения, что силы между площадкой и зарядами подчиняются 3-му закону Ньютона. Поэтому уравнение движения площадки может быть записано как

$$\frac{d\mathbf{P}_{\text{platform}}}{dt} = -\mathbf{F}_{\text{other}}.$$ \hfill (25)

Сканированное уравнение движения для площадки плюс заряды следует из (24)-(25) и (20)

$$\frac{d\mathbf{P}_{\text{mech}}}{dt} + \frac{d\mathbf{P}_{\text{platform}}}{dt} = \mathbf{F}_{\text{EM}} = -\frac{d\mathbf{P}_{\text{EM}}}{dt}.$$ \hfill (26)

Полный импульс системы, $\mathbf{P}_{\text{EM}} + \mathbf{P}_{\text{mech}} + \mathbf{P}_{\text{platform}}$, постоянный, как это и ожидалось. Центр масс "заряды + площадка" может меняться во времени, так что полный механический импульс всегда равен $-\mathbf{P}_{\text{EM}}$. Возвращаясь к уравнению (19), мы видим, что ЭМ импульс \mathbf{P}_{EM} (и поэтому механический импульс также $\mathbf{P}_{\text{mech}} + \mathbf{P}_{\text{platform}}$) периодичен во времени. Для примера парадокса Иванова со скоростями, описываемых уравнением (8), ЭМ импульс (19) есть (используя (11)-(12) и вычисляя с точностью до $1/c^2$ и R/D),

$$\mathbf{P}_{\text{EM}} = -\mathbf{P}_{\text{mech}} - \mathbf{P}_{\text{platform}} \\
\approx \frac{q_1 q_2 v}{2 c^2 D} \left(\left(\cos \frac{v t}{R} - \sin \frac{v t}{R} \right) \hat{x} + 2 \left(\cos \frac{v t}{R} + \sin \frac{v t}{R} \right) \hat{y} - \frac{R}{D} \left(1 + 3 \sin \frac{2 v t}{R} \right) \hat{y} \right).$$ \hfill (27)

Мы видим, что времененная производная (27) есть сила, вычисленная из (16), с обратным знаком.

Однако появление постоянного члена $-(q_1 q_2 v / 2 c^2 D)\hat{y}$ в (27) выглядит удивительным. Можно предположить, что имеется некий вид "скрытого" механического импульса системы, который равен и противоположен по знаку этому постоянному члену.

Я полагаю, что закон движения центра масс $\mathbf{r}_{\text{CM}}(t)$ системы может быть получен интегрированием $\mathbf{F}_{\text{EM}} = m_{\text{system}} \cdot \mathbf{a}_{\text{cm}}$, с использованием (16), что дает

$$\mathbf{r}_{\text{CM}} \approx \frac{q_1 q_2 v}{m_{\text{system}} c^2} \frac{R}{2D} \left(\left(\cos \frac{v t}{R} + \sin \frac{v t}{R} \right) \hat{x} + 2 \left(\cos \frac{v t}{R} - \sin \frac{v t}{R} \right) \hat{y} + \frac{3 R}{2D} \cos \frac{2 v t}{R} \hat{y} \right).$$ \hfill (28)

Это движение периодическое, но с сложной траекторией и очень малой амплитудой.

7. Приложение A. Электрическое взаимодействие цепей.

Должна ли сила между двумя цепями, нагруженными постоянными токами, включать члены, возникающие из-за запаздывающих Е полей движущихся зарядов, которые того же порядка, что и магнитная сила? Если это так, то анализ Ампера магнетизма должен быть некорректным. Важна особенность между проводом с током и изолированным зарядом в том, что провод электрически нейтрален (в первом приближении). Так что в проводе нет результирующего кулонова поля из-за зарядов в нем. Однако имеется ненулевое
E поле в проводе, так как только движущиеся заряды порождают поправки порядка \(1/e^2\) к их кулоновому полю. Но это ненулевое E поле не дает результатирующей силу, действующую на вторую цепь, если эта цепь также электрически нейтральна.

Действительно ли провод с током электрически нейтрален? 7 Если провод имеет ненулевую электропроводимость \(\sigma\) и плотность тока \(J\), тогда должно быть продольное E поле внутри провода согласно закону Ома, \(J = \sigma E\). Это E поле создано и удерживаемое присутствием ненулевой поверхностной плотности зарядов, величина которой изменяется линейно вдоль провода (так что величина E не зависит от положения). Плотность заряда на единицу длины примерно \(IRz\) [20], где \(R\) - сопротивление на единицу длины вдоль провода. Численное значение \(R\) - доля Ома на см. Отметим, что в Гауссовых единицах \(1/c = 30\) Ом. Поэтому результатирующий заряд на единицу длины провода с током порядка \(1/c\). Поверхностное распределение заряда имеет дипольный характер, так что его электрическое поле вне провода спадает скорее как \(R/t^3\), чем \(1/r^2\), где \(R\) - характерный радиус провода.

Потому электрическая сила между парой контуров, разделенных расстоянием \(r\), из-за поверхностного распределения зарядов имеет масштабный фактор \(I_1I_2R^3/c^2r^3\) и его можно пренебречь в сравнении с магнитной силой, которая имеет масштабный фактор \(I_1I_2R^3/c^2r^2\) согласно закону Ампера.

Также между контурами с токами существуют электрические силы, которые порядка \(I_1I_2R^2/c^2r^2\), получающиеся перемежением результатирующего заряда (одного контура) \(I_1R/c\) на поправку за счет запаздывания \(I_2vR/c^2\) при движении зарядов во втором контуре. Эта поправка согласно анализу Ампера порядка \(v/c^2\) по отношению к магнитным силам и потому ею также можно пренебречь для обычных контуров.

8. Приложение B: Разрешение с помощью лагранжиана Дарвина.

Альтернативный (и более формальный) подход к изложенному парадоксу может быть основан на приближении лагранжиана Дарвина [21] (также § 65 [22] и Гл. 12.6 [23]), где описывается взаимодействие частиц через их электромагнитные потенциалы в кулоновской калибровке с точностью до \(1/e^2\).

Здесь достаточно сказать, что векторный потенциал \(A_1\) электрического заряда \(q_1\), двигающегося со скоростью \(v_1\) на расстоянии \(r\) есть (с точностью до \(1/e^2\) в кулоновской калибровке)

\[
A_1 = \frac{q_1}{c r} \left[v_1 + (v_1 \cdot \hat{r}) \hat{r} \right].
\] \(29\)

Канонический импульс \(p_2\) заряда \(q_2\) в поле заряда 1 тогда

\[
p_2 = p_{\text{mech}} + \frac{q_2 A_1}{c},
\] \(30\)

где член \(q_2 A_1/c\) часто называют ЭМ импульсом заряда 2. 8 Электромагнитный импульс

\(7\)Большинство обсуждений о результатирующим заряде провода с током фокусируются на очень слабом эффекте. А именно, что объем, занимаемый ненулевой плотностью заряда движущихся электронов должен быть в \((1 + v^2/e^2\) больше соответствующего объема неподвижных положительных зарядов, так что электроны проходимости не ощущают радикальной силы. Однако, результатирующая плотность заряда благодаря этому эффекту в \(v/c\) раз меньше, чем поверхностная плотность заряда, требуемая чтобы удержать продольное поле внутри провода.

\(8\)Следуя Максвеллу, кто обозначал \(A/c\) как "электрокинетический импульс" в Гл. 604 [9], без современного определения "на единицу заряда"
общей системы зарядов \(q_1 \) и \(q_2 \) есть тогда

\[
P_{\text{EM}} = \frac{q_1 q_2}{2e^2 r} \left[\mathbf{v}_1 + \mathbf{v}_2 + (\mathbf{v}_1 \cdot \hat{r})\hat{r} + (\mathbf{v}_2 \cdot \hat{r})\hat{r} \right],
\]

как и было найдено перед этим в (19).

Полный канонический импульс изолированной системы есть, разумеется, величина постоянная во времени, что опять приводит к выводам Гл. 5 и 6.

. Литература.

Это собрание было инициировано У. Томсоном в память о Гершеле; среди множества других тем Томсон рассуждал о размерах атомов, происхождении жизни на Земле благодаря микроорганизмам, занесенным на нее метеоритами, что невозможно объяснить природу энергии Солнца, однако можно объяснить смещение периода Меркурия, измеренного Леверь.

Aetherreal Friction, Brit. Assoc. Reports, 43rd Meeting, Notes and Abstracts, pp. 32-35 1873),

Стоарт приводит доводы, что сопротивление излучения, ощущаемое зарядом, движущимся через поток излучения от черного тела, исчезает, когда температура резервуара (где находится черное тело) становится нулевой, подобно тому, как электросопротивление проводника стремится к нулю при \(T = 0 \). На 43-м собрании был также зачитан отчет Максвелла.
об экспоненциональном распределении плотности атмосферы как пример статистической
механики (стр. 29–32), доклад Релея о дифракционном пределе четкости спектральных
линий (стр. 39) и (возможно вызвавший наибольшее внимание) доклад А.Х. Аллена об
определении фальшивого чая (стр. 62).
608 (1908), http://puhep1.princeton.edu/~mcdonald/examples/EM/lorentz_praa 5 608 08.pdf
[12] A. Liénard, Champ électrique et magnétique produit par une charge électrique con-
tentrée en un point et animée d’un mouvement quelconque, L’Éclairage Élect. 16, 5, 53, 106
(1898).
[16] O. Heaviside, On the Transmission of Energy through Wires by the Electric Current,
pp. 434-441.
http://puhep1.princeton.edu/~mcdonald/examples/EM/abraham_ap_10_105_03.pdf
[19] T.H. Boyer, Illustrations of the Relativistic Conservation Law for the Center of Energy,