General Properties of the Electromagnetic Corrections to the Beta Decay of a Physical Nucleon

A. Sirlin
Department of Physics, New York University, New York, New York
(Received 26 June 1967)

Some general properties of the electromagnetic corrections to the β decay of a physical nucleon, that is, a nucleon in the presence of strong interactions, are discussed. The aim of the paper is to isolate and determine general properties which are independent of the details of the strong interactions and the assumptions about the existence of the intermediate boson. The method used consists essentially in separating out in a finite and gauge-invariant manner all the terms of order $1/k$ in the hadronic covariants, and then examining properties of the other contributions. Under some general and plausible mathematical assumptions, it is shown that all the terms of order α in the correction factor to the electron spectrum which explicitly depend on the electron energy E and the electron mass m can be rigorously computed, in spite of the complications of the strong interactions, provided that contributions of relative order $\alpha q/M, \alpha(E/M)\ln(M/E)$, and $\alpha\omega/c$ are neglected. In particular, the electromagnetic correction of order α to the shape of the allowed electron spectrum is given by a single universal function $g(E, E_{\text{e.m}}, m)$ of E, m, and the end-point energy $E_{\text{e.m.}}$; this function is independent of the details of the strong interactions and the assumption that the weak interactions are mediated by an intermediate boson. It is furthermore independent of the ratio M/M_F, and is physically significant, particularly if applied to nuclear β decays with $E_{\text{e.m.}}/m \gg 1$. These propositions do not preclude the existence of model-dependent terms which give contributions to the lifetime. No attempt is made here to evaluate these quantities, but their role on the physical observables is discussed. It is pointed out that, aside from the electron spectrum, there are other observables for which the corrections can be evaluated in a model-independent manner. This assertion is illustrated by giving the expression for the virtual radiative corrections of order α to the longitudinal polarization of the electron in allowed transitions. The contribution of the universal function $g(E, E_{\text{e.m}}, m)$ to the lifetime is briefly discussed. This paper implicitly assumes the validity of the vector and axial-vector theory of weak interactions.

I. INTRODUCTION

The radiative corrections to the β decay of a nucleon have been discussed extensively in the past. One reason why these corrections are of interest is their relevance to the problem of universality of the weak interactions. There are other practical reasons which, although not so well known, are also of experimental interest: for example, the corrections alter the shape of the allowed electron spectrum in β decay and these effects are significant when the end-point energy of the electron is large in comparison with the electron mass.

An interesting theoretical aspect of the corrections is that they are logarithmically divergent in the $V-A$ theory when evaluated in the case of a bare nucleon, i.e., a nucleon in the absence of strong interactions, while the corresponding quantities for muon decay are finite and well defined. In order to save the principle of universality of the weak interactions, which in the usual formulation relates the bare weak-coupling constants of these processes, two main approaches have been suggested. One, proposed by Lee and also investigated by other authors, assumes that the weak interactions are mediated by an intermediate boson. We recall that one of the main results of these calculations is that the relative renormalization in μ and β decay, which is the physically observable quantity, turns out to be finite. The other approach, discussed by Feynman, by Berman and the present author, and by Källén, suggests that the strong interactions themselves may provide a natural cutoff in the ultraviolet region. Recently, Bjorken, and Abers, Norton, and Dicus, using current-algebra techniques have asserted in very interesting papers that that part of the electromagnetic corrections to the vector decay coupling constant which arises from the vector current contains a divergent part which is independent of the strong interactions and is therefore identical to the corresponding infinity in the calculations of Refs. 2-4. Even if this assertion is correct, it does not give a complete answer to the problem of the relative renormalization to μ and β decay for two reasons: (a) In the first place, as these authors emphasize, there is a contribution from the axial current which may be also divergent and model-dependent, and (b) these calculations follow implicitly the usual assumption that the hadronic

6 A. Sirlin, Lecture Notes on Weak Interactions (W. A. Benjamin, Inc., New York, 1963), p. 173. This paper contains further references but, by now, the list is incomplete.

7 G. Källén, Nucl. Phys. 81, 225 (1967). The author wishes to thank Professor Källén for a very interesting private communication.

8 Supported in part by the National Science Foundation.

10 A. Sirlin, Lecture Notes on Weak Interactions (W. A. Benjamin, Inc., New York, 1963), p. 173. This paper contains further references but, by now, the list is incomplete.
leptonic currents are taken at the same space-time point in the weak-interaction Lagrangian. However, from the calculations with intermediate bosons we know that possible intrinsic structure effects of the weak interactions may alter the convergence properties of the electromagnetic corrections.

The investigation of these convergence properties is clearly a subject of great practical and conceptual interest. The corrections as a whole cannot be lightly dismissed as a subject of study because they are important in providing a detailed understanding of the experiments on the muon decay energy angle distribution and some aspects of β decay. Without these corrections, for example, the very precise experiments available in μ decay would not coincide with the predictions of the $V-A$ theory. One is then faced with the problem that the calculations are necessary in order to understand in detail some experiments while their effect on the problem of universality is far from clear.

In the present paper, the problem of the convergence properties of the electromagnetic corrections in the ultraviolet region is not investigated and is to a large extent bypassed. We will take here the hopeful point of view that somehow the weak, electromagnetic, and strong interactions successfully conspire to give a finite value for the relative renormalization of the β and μ decay coupling constants.

Rather, the aim of the present paper is to try to isolate and determine some general properties of the corrections which are independent of the details of the strong interactions and of the assumption that the weak interactions are mediated by an intermediate boson. We will show, under some general and plausible mathematical assumptions, the validity of the following proposition. "All the terms of order α in the correction factor to the electron spectrum which explicitly depend on the electron energy E and the electron mass m can be rigorously computed in spite of the complications of the strong interactions, provided that contributions of relative order aq/M, $\alpha(E/M) \ln(M/E)$, and $\alpha\phi/c$ are neglected." Moreover, such terms modify the Fermi and Gamow-Teller contributions to the transition probability in the same manner and coincide exactly with the corresponding quantities in the bare nucleon calculations." In particular, we conclude that the "electromagnetic corrections of order α to the shape of the allowed electron spectrum in neutron β decay is given by a single universal function $g(E, E_{\text{end}}, m)$ of E, m and the end-point energy E_{end} which is independent of the details of the strong interactions and the assumption that the weak interactions are mediated by an intermediate boson." Furthermore, they can be applied to allowed nuclear β decay using an independent-particle model of the nucleus.

It is important to note that the above propositions do not preclude the existence of terms independent of E and m which are affected by the strong interactions. Such terms give contributions to the β-decay lifetime. We will not attempt to evaluate them in this paper, as they are model-dependent, but rather we will limit ourselves to indicating the contribution of the finite function $g(E, E_{\text{end}}, m)$ to the lifetime. If the relative renormalization of the μ and β decay-coupling constants turns out to be finite, we believe that these contributions will play a significant role, as they contain the large terms of logarithmic order in the electron energy.

The discussion in the paper proceeds according to the following pattern. In Sec. II the virtual radiative corrections of order α are separated into two parts. The first part, which can be evaluated independently of the details of the strong interactions, contains among other contributions all the terms of order $1/k$ in the hadronic covariants (k is the photon four-momentum); it is also finite (in the UV region) and gauge-invariant. This first part, when integrated over the photon four-momentum, gives the usual infrared-divergent terms, the Coulomb term of order α, and various logarithms and Spence functions characteristic of the point-structure calculation. This method of separation is in principle similar to a procedure used by Frautschi, Suura, and Yennie and by Meister and Yennie in their investigations of the infrared divergence in quantum electrodynamics. However, our presentation is quite different, as we wish to emphasize some of the effects of the strong interactions. In the discussion of Sec. II we first consider a nucleon in the presence of strong interactions without assuming that the decay is mediated by an intermediate boson. At the end of Sec. II we then explain the simple changes needed to allow for this possibility. In fact, it seems very likely that the discussion and results of this paper can be extended to more general space-time structures for the weak interactions, such as those investigated, for example, in Ref. 11. However, we will not study this point in the present paper.

In the second class of contributions, which do not contain terms of order $1/k$ in the hadronic covariants,
depend on the details of the strong interactions and the assumptions about the intermediate boson. They involve three- and four-point functions. In Sec. III, we discuss these contributions and show, under general and plausible mathematical assumptions, that they consist of terms independent of \(E \) and \(m \) plus terms of order \(a g_\alpha M \) and \(a (E/M) \ln (M/E) \). We further prove some general properties of the first type of terms, which are necessary for the physical applications.

In Sec. IV we give the general expression for the correction factor to the electron spectrum. We discuss then the role played by the model-dependent and model-independent terms regarding the physical observables. After taking note of the contributions of the universal function \(g(E,F,m) \) to the lifetime, we emphasize that there are other observables, aside from the electron spectrum, for which the radiative corrections of order \(a \) can be evaluated in a model-independent manner. We illustrate this point by giving the expression for the virtual radiative corrections to the longitudinal polarization of the electron in allowed decays.

The discussion and results of this paper implicitly assume the validity of a vector and axial-vector theory of weak interactions.

II. The Separation

In this section the virtual radiative corrections of order \(a \) are separated into two parts. The first part is characterized essentially by the following properties: (i) It is independent of the details of the strong interactions; (ii) it contains all the terms of order \(1/k \) in the hadronic covariants; (iii) it is finite (in the \(\text{uv} \) region) and it is invariant under gauge transformations of the photon propagator. The second part depends on the details of the strong interactions and involves three- and four-point functions.

We consider first the diagrams in which a photon is exchanged between the hadronic and electron lines. Such diagrams can be divided into three classes according to whether the photon is emitted from an electromagnetic vertex attached to the external proton line, or the external neutron line, or from the internal structure of the weak vertex. The contribution of the first class of diagrams [Fig. 1(a)] is given by

\[
M^{(p)} = \frac{-G^\mu}{\sqrt{2}} \frac{\alpha}{4 \pi^2 i} \int \frac{dk}{k^2} D_{\mu}(k) \left[\bar{u}_\mu(2l_2 - \gamma_2, k)O_{\lambda 2} \right] \times \left[\bar{u}_\mu \Gamma_{\mu}^{(p)}(p_2, p_2 + k) \bar{S}'(p'+k) W_s(p_2 + k, p_1) u_n \right],
\]

where \(p_2, p_2, l, k \) stand for the neutron, proton, electron, and photon four-momenta; \(\lambda_{\mu\nu} \) is the photon mass, \(O_{\lambda 2} = \gamma_2 (1+\gamma_2) \); \(G^\mu \) is the bare-coupling constant of the weak-vector current, \(W_s \) and \(\Gamma_{\mu}^{(p)} \) are the fully dressed renormalized proper vertices of the weak interaction and electromagnetic currents; and \(i \bar{S}' \) is the fully dressed renormalized propagator of the proton. It is important to note that \(W_s \) obtains contributions from both the vector and axial-vector currents. The quantity \(-iD_{\mu}(k) \) is the photon propagator, which we choose to write in the Landau gauge:

\[
D_{\mu}(k) = \frac{(g_{\mu\nu} - k_\mu k_\nu/k^2 + i\epsilon)}{k^2 - \lambda_{\text{min}}^2 + i\epsilon},
\]

where \(m_p \) is the proton mass. This equation may be regarded as the definition of \(F_{\mu}^{(p)} \). Using the generalized Ward identity, one readily checks from Eq. (3) that

\[
F_{\mu}^{(p)}(p_2, p_2 + k) = k, \quad F_{\mu}^{(p)}(p_2, p_2 + k) = \gamma_\mu,
\]

where it is understood that \(F_{\mu}^{(p)} \) acts on the spinor \(\bar{u}_\mu \) on the left.

Equations (4) suggest writing

\[
F_{\mu}^{(p)}(p_2, p_2 + k) = \gamma_\mu + (p_2 + k)u_n, \quad \left(4a \right)
\]

where

\[
\gamma_\mu(p_2, p_2 + k) = 0, \quad \left(4b \right)
\]

\[
X_{\mu}^{(p)}(p_2, p_2 + k) = 0, \quad \left(4c \right)
\]

We now insert Eqs. (3) and (5a) into Eq. (1) and separate the terms of order \(1/k \) in the hadronic covariant in the following manner:

\[
H_{\mu\nu}^{(p)}(p_2, p_2 + k) = \bar{u}_\mu \Gamma_{\mu}^{(p)}(p_2, p_2 + k) \bar{S}'(p'+k) \times W_s(p_2 + k, p_1) u_n = (k^2 - 2p_2 + k + i\epsilon)^{-1} \times \bar{u}_\mu \left(2p_2k + k \right) W_s(p_2, p_1) R_n^{(p)}(p_2, p_2 + k) u_n, \quad \left(6a \right)
\]

\[\text{In this paper we adopt the same conventions and definitions as R. P. Feynman, Quantum Electrodynamics (W. A. Benjamin, Inc., New York, 1962), with the exception of } \gamma_2 \text{ which we define as } \gamma_2 = \gamma_1 \gamma_2 \gamma_1 \gamma_2.\]

\[\text{A similar decomposition was used for different reasons by B. Zumino, Nuovo Cimento N, } 647 \text{ (1966).}\]
where
\begin{equation}
R_{\alpha\beta}^{(p)}(p_3, p_1, k) = (2p_{\mu} + q_\alpha) [W_{\lambda}(p_2 + k, p_3) - W_{\lambda}(p_3, p_1)] \\
+ \chi_{\alpha\lambda}(p_3, p_1 + k, k' + m_\nu) W_{\lambda}(p_3, p_1) \\
+ [\gamma_{\lambda\rho} k_{\rho}] W_{\lambda}(p_3 + k, p_1)/2. \tag{6b}
\end{equation}

Assuming that \(\partial W_{\lambda}/\partial k_{\alpha}(p_3 + k, p_1) \) exists, we see that \(R_{\alpha\beta}^{(p)} \to 0 \) linearly with \(k_\mu \to 0 \). Thus, while the first term in Eq. (6a) is obviously singular as \(k_\mu \to 0 \), we notice that the term proportional to \(R_{\alpha\beta}^{(p)} \) is "regular as \(k_\mu \to 0 \)" in the sense that
\[
\lim_{k_\mu \to 0} (k^2 + 2p_{\mu} k + m^2)^{-1} R_{\alpha\beta}^{(p)}(p_3, p_1, k)
\]
exists. The term \(k_\mu W_{\lambda}(p_3, p_1) \) in Eq. (6a) has been separated together with the term of order \(1/k \) for technical reasons that will become apparent later.

It is clear that a similar analysis can be made for the diagrams in which the photon is exchanged between the electron and the electromagnetic vertex attached to the external neutron line [Fig. 1(b)]. The electromagnetic form factor of the neutron \(F_{\mu}^{(n)}(p_1 - k, p_1) \) can be introduced by means of an equation analogous to Eq. (3). However, because the neutron has zero charge, instead of Eq. (4a) one obtains
\begin{equation}
k_{\mu} F_{\mu}^{(n)}(p_1 - k, p_1) = 0, \tag{7a}
\end{equation}
\begin{equation}
F_{\mu}^{(n)}(p_3, p_1) = 0, \tag{7b}
\end{equation}
where it is understood that \(F_{\mu}^{(n)} \) acts on the spinor \(u_\alpha \) on the right. The matrix element for this contribution is analogous to Eq. (3) with the hadronic covariant \(H_{\alpha\beta}^{(p)}(p_3, p_1) \) of Eq. (6a) replaced by
\begin{equation}
H_{\alpha\beta}^{(n)}(p_3, p_1, k) = [-k^2 - 2p_\nu k + i\epsilon]^{-1} \\
\times \left[u_\alpha W_{\lambda}(p_2, p_1 - k) (p_1 - k + m_\nu) \\
\times F_{\mu}^{(n)}(p_1 - k, p_1) u_\alpha \right]. \tag{7c}
\end{equation}

Clearly, \(H_{\alpha\beta}^{(n)} \) is "regular" as \(k_\mu \to 0 \). Let us now call \(G_{\alpha\beta}(p_3, p_1, k) \) the matrix element for the emission of a photon of four-momentum \(k_\mu \) and polarization \(\mu \) from any internal line of the proper vertex of the weak-interaction current [Fig. (1c)]. By judicious use of the generalized Ward's identity for the electromagnetic vertex functions, one finds the relation:
\begin{equation}
k_{\mu} G_{\alpha\beta}(p_3, p_1, k) = W_{\lambda}(p_3, p_1) - W_{\lambda}(p_3 + k, p_1). \tag{8a}
\end{equation}

Expressions analogous to Eq. (8a) are well known in the literature.\(^{20}\) Perhaps the simplest way of obtaining Eq. (8a) in our case is to consider an arbitrary graph for the process \(p + e^+ \to p + e^- + v \) without any photons and then insert a photon of four-momentum \(k_\mu \) and polarization \(\mu \) in all the charged lines of the graph, including the external proton and electron lines. Demanding that the sum of the corresponding matrix elements should vanish after multiplication with \(k_\mu \) and summing over all possible initial graphs one readily obtains Eq. (8a).

A fundamental property of \(G_{\alpha\beta}(p_3, p_1, k) \) is that it is "regular" as \(k_\mu \to 0 \). This can be shown in a number of ways that we briefly summarize:

(a) Assuming that \(\partial W_{\lambda}/\partial k_{\alpha}(p_3 + k, p_1) \) exists, Eq. (8a) tells us that \(k_\mu G_{\alpha\beta}(p_3, p_1, k) \) vanishes linearly with \(k_\mu \to 0 \). This implies that \(G_{\alpha\beta} \) cannot have singularities of the form \(k_{\alpha}/(p_2 - k) \), where \(k_{\alpha} \) is a tensor independent of \(k_\mu \).

(b) Consider an arbitrary diagram \(W_{\lambda}^{(p)}(p_3, p_1) \) contributing to the proper vertex of the weak-interaction current and not involving photons.\(^{21}\) From perturbation theory, it is known that the matrix element \(G_{\alpha\beta}^{(p)}(p_3, p_1, 0) \) for the emission of a zero-momentum photon from the internal lines of \(W_{\lambda}^{(p)}(p_3, p_1) \) can be obtained by differentiation with respect to the proton four-momentum, that is,
\begin{equation}
G_{\alpha\beta}^{(p)}(p_3, p_1, 0) = -\frac{\partial W_{\lambda}^{(p)}}{\partial p_{\mu}}, \tag{8b}
\end{equation}
which, of course, is consistent with Eq. (8a). Eq. (8b) can be proved by following the charge line ending in the proton. It is always possible to choose the internal momenta in this line in such a manner that, for example, the propagators of positively and negatively charged fermions are of the form \(i(p'_2 + k - m_\nu)^{-1} \) and \(i(-p'_2 + k - m_\nu)^{-1} \), respectively, where the \(m_\nu \) and \(k_\nu \) stand for internal masses and momenta. Differentiation with respect to \(p_{\mu} \) inserts a zero-momentum photon in each charged propagator of this line with the correct sign, while, as it is well known, insertions of zero-momentum photons in closed loops give a vanishing contribution. Equation (8b) shows that \(G_{\alpha\beta} \) is finite at \(k=0 \) provided \(\partial W_{\lambda}(p_3, p_1)/\partial p_{\mu} \) exists.

(c) The matrix element for the emission of a photon of momentum \(k_\mu \) and polarization \(\mu \) from any vertex on the hadronic line is given by
\begin{equation}
M_{\alpha\beta} = -i \int d^4 x e^{i k x} \langle \bar{p} \left[T[j_\alpha(x) j_\beta^*(0)] \right] n \rangle. \tag{8c}
\end{equation}

where \(j_\alpha \) and \(j_\beta^* \) are the electromagnetic and weak currents. Inserting a complete set of intermediate states one sees that only the one-proton state gives rise to a \(1/k \) singularity (as \(k_\mu \to 0 \)) and that the residue of this singularity coincides with the first term in the square bracket of Eq. (6a). Thus, the only \(1/k \) singularity in \(M_{\alpha\beta} \) corresponds to the term already separated in Eq. (6a). Consequently, we see that \(G_{\alpha\beta}(p_3, p_1, k) \) is "regular" as \(k_\mu \to 0 \).

Inserting Eq. (6a) into Eq. (1) and adding the contributions from diagrams in which the photon is emitted from the electromagnetic vertex attached to the external neutron line and from the internal lines of the proper vertex of the weak-interaction current, we obtain

\(^{21}\) The index \(i \) labels the particular diagram under consideration and \(\sum_{W_{\lambda}(p_3, p_1)} = W_{\lambda}(p_3, p_1) \).
the matrix element M_1:

$$M_1 = \frac{G_{F}^{0}}{\sqrt{2}} \int \frac{d^{4}k}{2\pi^{4}} D_{\nu\mu}(k) \left[\hat{u}_{p}(2\nu - \gamma, k)O_{\lambda\nu} \right] \left[\hat{u}_{p}(2\nu - \gamma, k)O_{\lambda\nu} \right]$$

where

$$T_{\lambda\mu}(p_\nu, p_{1\mu}) = \frac{R_{\lambda\mu}(\nu, p_\nu, p_{1\mu})}{k^2 + 2p_\nu \cdot k + i\epsilon} + R_{\lambda\mu}(\nu, p_\nu, p_{1\mu}) \left[k^2 - 2p_\nu \cdot k + i\epsilon \right]$$

(9a)

(9b)

$R_{\lambda\mu}(\nu, p_\nu, p_{1\mu}) = W_{\lambda}(p_\nu, p_{1\mu}) - W_{\lambda}(p_{1\nu}, p_{1\mu})$ (9c)

The quantity M_1 is the matrix element (in the Landau gauge) of all the diagrams in which a photon is exchanged between the hadronic and electron lines (Figs. 1(a), (b), (c)). The term proportional to $(2p_\nu + h_{\nu})W_{\lambda}(p_\nu, p_{1\nu})$ in Eq. (9a) and the term involving $R_{\lambda\mu}(\nu, p_\nu, p_{1\mu})$ in $T_{\lambda\mu}$ represent the contribution from graphs in which the photon is emitted from a vertex attached to the external proton line, while $G_{\lambda\mu}$ and the term involving $R_{\lambda\mu}(\nu, p_\nu, p_{1\mu})$ in $T_{\lambda\mu}$ correspond to the diagrams in which the photon is emitted from the internal lines of the weak vertex and from a vertex attached to the external neutron line, respectively.

The tensor-pseudotensor $T_{\lambda\mu}(p_\nu, p_{1\mu})$ has two basic properties: (a) $T_{\lambda\mu}$ is “regular” as $k \to 0$; (b) $T_{\lambda\mu}$ is transversal in the sense that

$$k_{\nu}T_{\lambda\mu} = 0.$$

Equation (10) is obtained immediately by using Eqs. (4a), (7a), (8a) and the definitions (9b) and (9c). We also note that the contribution of the term proportional to $(2p_\nu + h_{\nu})W_{\lambda}(p_\nu, p_{1\nu})$ in Eq. (9a) can be computed explicitly: one readily finds that the corresponding k integration is finite in the uv region (in the Landau gauge used in Eq. (9a)), although it is infrared divergent (i.e., it depends on $\ln m_{\nu}$).

Thus, in Eq. (9a) we have achieved a separation of the diagrams depicted in Figs. 1(a)–(c) into two parts: the first part is finite (in the Landau gauge used here), contains all the terms of order $1/k$ in the hadronic covariance and can be evaluated independently of the details of the strong interactions; the second part depends on the details of the strong interactions through $T_{\lambda\mu}$ and is regular as $k_{\nu} \to 0$ in the manner described above.

Equation (9a), by itself, is not invariant under gauge transformations of the photon propagator. As is well known, in order to obtain matrix elements which are invariant under such transformations, it is necessary to add to Eq. (9a) the diagrams in which the photon is emitted and absorbed by the electron line (electron wave function renormalization) and also the diagrams in which the photon is emitted and absorbed by the hadronic line.

In the Landau gauge, after mass renormalization, the electron wave function renormalization (Fig. 2) to order α is given by

$$M_2 = \frac{G_{F}^{0}}{8\pi^{2}} \int \frac{d^{4}k}{2\pi^{4}} D_{\nu\mu}(k) \left[\hat{u}_{p}W_{\lambda}(p_\nu, p_{1\nu})u_{\mu} \right]$$

$$\times \int \frac{d^{4}k}{2\pi^{4}} D_{\nu\mu}(k) \left[\hat{u}_{p}W_{\lambda}(p_\nu, p_{1\nu})u_{\mu} \right]$$

$$\times \int \frac{d^{4}k}{2\pi^{4}} D_{\nu\mu}(k) \left[\hat{u}_{p}W_{\lambda}(p_\nu, p_{1\nu})u_{\mu} \right]$$

(11)

One readily verifies that the integral in Eq. (11) is finite in the uv region, a well-known property of the electron wave function renormalization in the Landau gauge. Moreover, M_2 is proportional to the zeroth-order matrix element

$$M_0 = \frac{G_{F}^{0}}{8\pi^{2}} \int \frac{d^{4}k}{2\pi^{4}} D_{\nu\mu}(k) \left[\hat{u}_{p}W_{\lambda}(p_\nu, p_{1\nu})u_{\mu} \right]$$

(12)

From Lorentz covariance, it is clear that the matrix element for the diagrams in which a photon is emitted and absorbed by the hadronic line (Fig. 3) must have the following structure:

$$M_3 = \frac{G_{F}^{0}}{2\pi} \int \frac{d^{4}k}{2\pi^{4}} D_{\nu\mu}(k) \left[\hat{u}_{p}W_{\lambda}(p_\nu, p_{1\nu})u_{\mu} \right]$$

(13a)

where V_λ and A_λ are hadronic covariants of the form

$$V_\lambda = \bar{u}_p f_1(q^2)\gamma_\lambda + if_2(q^2)\gamma_\lambda \gamma_\tau + f_3(q^2)\gamma_\lambda u_\mu,$$

(13b)

$$A_\lambda = \bar{u}_p g_1(q^2)\gamma_\lambda + ig_2(q^2)\gamma_\lambda \gamma_\tau + g_3(q^2)\gamma_\lambda u_\mu,$$

(13c)

and we remember that q is the total-momentum transfer to the leptons. If we neglect the terms proportional to aq and the q^2 dependence of the form factors, which most likely are excellent approximations, only the terms $f_1(0)\gamma_\lambda$ and $g_1(0)\gamma_\lambda \gamma_\tau$ survive in Eqs. (13). The effect of contributions of this type on the physical observables is discussed in Sec. IV.

As it is well known, all the infrared terms in the contributions of Fig. 3 arise from graphs in which the photon is emitted and absorbed by the outgoing proton and are entirely contained in the following quantity22:

$$M_3^{(c)} = \frac{\alpha}{8\pi^{2}} M_0 \int \frac{d^{4}k}{2\pi^{4}} D_{\nu\mu}(k) \left[\hat{u}_{p}W_{\lambda}(p_\nu, p_{1\nu})u_{\mu} \right]$$

(14)

22 These contributions must be included in the model-independent part of the corrections to guarantee the gauge invariance of the separation and the cancellation of the infrared divergences.
where we have introduced the superscript e to indicate that $M_s^{(e)}$ is a convection-convection contribution in the classification introduced in Ref. 17. The fact that Eq. (14) contains all the infrared terms in the contributions of Fig. 3 can be discussed by methods similar to those explained after Eq. (8a) and is consistent with statements made in Refs. 16 and 17.

Finally, let us consider the contribution of Eqs. (11), (14), and the first term in Eq. (9a); each of these terms is finite in the uv region and their sum is invariant under gauge transformations of the photon propagator. The last statement can be checked immediately by making the replacement $D_{pq}(k) \rightarrow k_{pq}c(k^2)$ (where c is arbitrary) and observing that the sum vanishes. The explicit contribution of these terms and the inner bremsstrahlung diagrams is given in Sec. IV; we anticipate that their dependence on E and \mathbf{m} is identical to that obtained in the bare nucleon calculation.

Thus far, we have considered a nucleon in the presence of the strong interactions, but we have not taken into account the possibility that the decay occurs via an intermediate boson. However, it is clear that the separation and all equations discussed in this section can be extended immediately to the case of an intermediate boson. Graphs in which a photon is exchanged between the boson and the electron are included in the contribution involving $T_{\lambda\lambda}$ in Eq. (9a), while all other graphs in which a photon is attached to the intermediate boson are included in Eq. (13a). In other words, the role of the intermediate boson in this section is simply to "enlarge" the structure of the weak vertex. As it was mentioned in the Introduction, it is very likely that these arguments can be extended to more general space-time structures for the weak interactions.

III. ON SOME GENERAL PROPERTIES OF THE MODEL-DEPENDENT CONTRIBUTIONS

In this section we discuss some general properties of the term involving $T_{\lambda\lambda}$ in Eq. (9a). Aside from constant factors, it is given by the integral

$$ I = \frac{\alpha}{2\pi} \int \frac{d^4p}{k^2 + i\epsilon} \sum_{\Lambda} \frac{D_{\lambda\Lambda}(p)}{k^2 - 2\lambda \cdot k + i\epsilon} \frac{1}{k^2 + i\epsilon} , $$

(15)

where we have used the transversality relation of Eq. (10) and have set $\lambda_{\min} = 0$ because the integral is infrared-convergent. Equation (15) depends on the details of the strong interactions and the assumptions about the existence of an intermediate boson via the tensor-pseudotensor $T_{\lambda\lambda}$. In particular, the convergence of I in the uv region depends on the asymptotic properties of $T_{\lambda\lambda}$ as $k \rightarrow \infty$, and these are model-dependent.

We will assume that Eq. (15) is either finite in the uv region or that otherwise it has been regularized so as to have mathematical meaning.

Let us first consider the contribution K to Eq. (15) involving the factor γ^λ_k in the leptonic covariant:

$$ K = -\frac{\alpha}{2\pi} \int \frac{d^4p}{k^2 + i\epsilon} \frac{D_{\lambda\Lambda}(p)}{k^2 - 2\lambda \cdot k + i\epsilon} \frac{1}{k^2 + i\epsilon} . $$

Using the separation

$$ \left[k^2 - 2\lambda \cdot k + i\epsilon \right]^{-1} = \left[k^2 + i\epsilon \right]^{-1} + \frac{2\lambda \cdot k}{k^2 + i\epsilon} \left[k^2 - 2\lambda \cdot k + i\epsilon \right]^{-1} , $$

(17a)

K can be written as:

$$ K = K_1 + K_2 , $$

(17b)

$$ K_1 = -\frac{\alpha}{2\pi} \int \frac{d^4p}{k^2 + i\epsilon} \frac{D_{\lambda\Lambda}(p)}{k^2 + i\epsilon^2} \frac{1}{k^2 + i\epsilon} \frac{1}{k^2 - 2\lambda \cdot k + i\epsilon} , $$

(17c)

$$ K_2 = -\frac{\alpha}{2\pi} \int \frac{d^4p}{k^2 + i\epsilon} \frac{D_{\lambda\Lambda}(p)}{k^2 + i\epsilon^2} \frac{1}{k^2 + i\epsilon} \frac{1}{k^2 - 2\lambda \cdot k + i\epsilon} . $$

(17d)

Because $T_{\lambda\lambda}(p_2, p_1, k)$ is "regular" as $k \rightarrow 0$, K_1 and K_2 converge in the infrared region.

The integral in Eq. (17c) does not involve the electron four-momentum ℓ_d explicitly. If the total-momentum transfer to the leptons q is neglected in $T_{\lambda\lambda}$ so that $T_{\lambda\lambda}(p_2, p_1, k)$ is approximated by $T_{\lambda\lambda}(p_1, p_1, k)$, it is easy to see that performing the k integration that K_1 is of the form (see Appendix A):

$$ K_1 = \frac{\alpha}{2\pi} \int \frac{d^4p}{k^2 + i\epsilon} \frac{D_{\lambda\Lambda}(p)}{k^2 + i\epsilon} \frac{1}{k^2 - 2\lambda \cdot k + i\epsilon} , $$

(17e)

where a and b are constants independent of ℓ_d. The precise values of a and b depend on $T_{\lambda\lambda}$ and, therefore, on the details of the strong interactions and the assumptions about the existence of an intermediate boson. The effect of contributions of the form (17e) on the physical observables is discussed in Sec. IV.

We now consider the contribution K_2 of Eq. (17d) and discuss its dependence on the four-vector ℓ_d. We will illustrate our procedure by considering the contribution to K_2 from the term involving $R_{\lambda\lambda}(p_2, p_1, k)$ in the definition of $T_{\lambda\lambda}$ [Eq. (9b)]. The other terms can be discussed in a similar manner.

Using the fact that $R_{\lambda\lambda}(p_2, p_1, k) \rightarrow 0$ as $k \rightarrow 0$ we expand this quantity as follows:

$$ R_{\lambda\lambda}(p_2, p_1, k) = k^\alpha S_{\alpha\lambda}(p_2, p_1, k) + k \cdot p \cdot S_{\alpha\lambda}(p_2, p_1, k) . $$

(18a)
where \(S_{\alpha\mu}(t_0, t^i) \) is independent of \(k \) and \(S_{\alpha\mu}(l^0, k) \) is regular as \(k \to 0 \). Using Eq. (18a), and denoting by \(K_{\alpha}^{(p)} \) the contribution from the \(R_{\alpha} \) term in Eq. (9b), one obtains:

\[
K_{\alpha}^{(p)} = (\alpha/\pi) \int \frac{d^4k}{k^2+i\epsilon} \left[\left(\Pi_{\alpha\mu} - S_{\alpha\mu}^{(p)} \right) + k_{\mu} \Pi_{\alpha\mu}^{(p)}(p^2, \mu) \right] \mu_{\alpha} \left[k^2 + 2l_{\mu} k_{\mu} + i\epsilon \right].
\]

The integral involving \(S_{\alpha\mu}(t_0, t^i) \) can be evaluated by standard methods and one finds, as intuitively expected, that it contains terms of logarithmic order in \(E \) and \(m \) but it does not contain terms of order \(1/m \). As this particular integral is multiplied by \(\mu_{\alpha} \), we see that the first term in Eq. (18b) gives contributions of order \(\alpha(E/m_\pi) \ln(m/E) \), \(\alpha(E/m_\pi) \), and smaller. We refer to these contributions as “terms of higher order in the lepton four-momentum”; they are affected by the strong interactions but very likely they are quite small, as they involve two small factors.

The integral involving \(S_{\alpha\mu}(t_0, t^i) \) cannot be evaluated explicitly in our method, as the exact dependence of this function on \(k \) has not been determined. For the purpose of further discussion, let us define the expression

\[
L^{(p)}(\xi) = \int \frac{d^4k}{k^2+i\epsilon} \left[\Pi_{\alpha\mu}^{(p)}(t_0, t^i, k) \right],
\]

where we have suppressed the tensor indexes in \(L \) and \(\xi \) is a numerical variable. We note that \(L^{(p)}(\xi) \) is the integral involving \(S_{\alpha\mu}(t_0, t^i) \) in Eq. (18b). For \(\xi = 0 \), \(L^{(p)}(0) \) is well defined. In fact, because \(S_{\alpha\mu}(t_0, t^i) \) is regular as \(k \to 0 \), \(L^{(p)}(0) \) is convergent in the infrared region, and it possesses the same convergence properties in the ultraviolet as \(L^{(p)}(1) \). We will assume in this paper that \(L^{(p)}(\xi) \) is a continuous function of \(\xi \) in the interval \(-1 < \xi < 1\) or that, at least, \(L^{(p)}(\xi) \) remains bounded in this region. The continuity assumption seems to be a very plausible mathematical hypothesis and it is illustrated in Appendix B by choosing a particular form for \(S_{\alpha\mu}(t_0, t^i, k) \). In this Appendix we discuss also the continuity properties of \(L^{(p)} \) regarded as a function of the four variables \(t_\mu (\mu = 1, 2, 3) \), in connection with the problem of mass singularities.

Under the above mentioned assumptions we see that the second term in Eq. (18b) is also of “higher order in \(l \)” as the integral \(L^{(p)}(1) \) is multiplied by \(l_{\alpha} \). Therefore, the same is true for \(K_{\alpha}^{(p)} \). More precisely, the second term in Eq. (18b) is of the order \(\alpha E/M \), where \(M \) may be the proton mass \(m_\pi \), the mass of the intermediate boson, or the mass of the hadrons which characterize the behavior of the structure function \(S^{(p)}(t_0, t^i, k) \). A similar analysis shows that the term involving \(l_{\alpha} \) in the leptonic covariant of Eq. (15) is also of higher order in the lepton momentum.

In summary, we conclude that the contributions of the term \(T_{\alpha\mu} \) in Eq. (9a), which depends on the details of the strong interactions and the assumptions about the existence of the intermediate boson, are of the form (17e), provided that terms of order \(\alpha(E/M) \ln(M/E) \) and \(\alpha q/M \) are neglected.

IV. GENERAL RESULTS

In Sec. I we have separated the contributions from the diagrams of Fig. 1 into two parts discussed in detail in Eq. (9a) and subsequent paragraphs. We pointed out that the first part, when combined with the electron wave function renormalization (Fig. 2) and the convection-action contribution to the diagrams of Fig. 3, [Eq. (11)], is invariant under gauge transformations of the photon propagator, is finite in the uv region, and is independent of the details of the strong interactions and the assumptions about the existence of the intermediate boson. These particular contributions are expressed in terms of well-defined integrals and can be evaluated by standard methods. Aside from these, we encounter contributions which do depend on the details of the strong interactions and the assumptions about the intermediate boson, namely the term involving \(T_{\alpha\mu} \) in Eq. (9a) and the contributions to Fig. 3 not contained in Eq. (11). In Sec. III and in the discussion in Sec. II after Eq. (3a) we have shown, under some general and plausible assumptions, that these two contributions are of the form given in Eq. (17e), provided we neglect terms of order \(\alpha(E/M) \ln(M/E) \) and \(\alpha q/M \).

Thus, we can write all these “model-dependent terms” in the form

\[
S = \frac{G^{\rho}_v}{\sqrt{2}} \frac{\alpha}{2\pi} \left[\tilde{u}_{O_\alpha} \gamma_\mu \tilde{u} \left(\gamma_\rho - i \bar{\gamma}_\rho \gamma_\gamma \right) u_n, \right]
\]

where \(c \) and \(d \) are constants independent of \(E \) and \(m \). Equation (19) obviously contributes to the corrections to the lifetime. However, if we neglect terms of order \(\alpha^2 \), it is clear that these terms can be formally “absorbed” in the zeroth-order matrix elements by redefining the vector and axial-vector coupling constants. Therefore, up to terms of order \(\alpha \) the contribution of Eq. (19) will not alter any observable which to zero order in \(\alpha \) is independent of the values of \(G^{\rho}_v \) and \(G^{\rho}_A \).

If the initial neutron is unpolarized, there are two such observables: (i) the electron spectrum when the neutrino direction and lepton polarizations are undetected and (ii) the longitudinal polarization of the electron when the neutrino direction and polarization are undetected.

Combining the contribution of the first term of Eq.
which describes the deviations from the allowed electron spectrum arising from the radiative corrections of order α. It differs from the corrections computed in the past in a numerical constant, independent of E, E_m, and m. Therefore, it gives the same corrections to the shape of the electron spectrum as the "bare-particle" calculations. The difference, of course, is that in the present approach we have concluded that this function is not altered by "structure effects." As was mentioned in Sec. 4 of Ref. 3, the corrections to the spectral shape arising from these effects is significant, particularly in allowed nuclear β decays with $E_m \gg m^2$.

For given values of the coupling constants G_F^0 and G_A^0, the function g increases the decay probability for neutron β decay by 1.5% and that of O14 by 3.3%. Clearly, this is not a complete calculation of the corrections to the lifetime because we have not considered the model-dependent contributions of Eq. (20c). However, the effect of g on the lifetime is rather large as it gives rise to the term $3(\alpha/2\pi) \ln(m_p/E_m)$, which was discussed in detail in Ref. 4.

Aside from the electron spectrum, there are other observables for which the radiative corrections can be computed in a "model-independent manner," provided that the terms of order α_0 and $\alpha (E/M) \ln(M/E)$ are neglected.

For allowed decays the interference with the zeroth-order terms can be rigorously computed and we find for the longitudinal polarization the expression

$$P = -\beta \left[1 + \frac{\alpha (1-\beta)}{2\pi} \ln \left(\frac{\beta}{1-\beta} \right) \right].$$

In Eq. (21) we have only included the contribution of $

1. The function $g(E,E_m,m)$ differs from the expression between curly brackets in Eq. (4.1) of Ref. 3 by a constant term $6 \ln(\alpha/m_\mu) + 9/4$, where α is the fine cutoff in the bare-particle calculation. We have simplified the structure of this function by using the identity

$$2L(\beta) - 2L(-\beta) + L((1-\beta)/2) - L((1+\beta)/2) = 2L(\beta^2/(1+\beta) - L((1+\beta)/2)).$$

2. The number of such observables is particularly large for pure Gamow-Teller or pure Fermi transitions.

3. In the allowed approximation these terms may be written as scalar and tensor contributions of order α multiplied by a function of E. Their interference with M_0 gives a contribution of order α to the Fierz interference coefficient b. The origin of Eq. (21) can then be understood in terms of the conventional theory of β decay by observing Eqs. (9), (A5), and (A10) of the paper of J. D. Jackson, S. B. Treiman, and H. W. Wyld, Jr. [Phys. Rev. 106, 517 (1957)]. These interference terms give also a contribution to the electron spectrum, which have been included in the function $g(E,E_m,m)$. The expression of the terms not proportional to M_0 in terms of induced scalar and tensor terms is not necessary to perform the calculations but it is mentioned here for orientational purposes.
the virtual radiative corrections. This result is valid for an arbitrary value of $M_{\alpha\gamma}/M_p$. The absence of the model-dependent terms c and d indicates again that Eq. (21) is independent of the details of the strong interactions and the assumptions about the existence of the intermediate boson.

ACKNOWLEDGMENTS

I am greatly indebted to Professor W. Zimmermann and Dr. J. Abate and Dr. R. Rabitz for many helpful and stimulating discussions. I also wish to thank Professor G. Källén and Professor R. E. Norton and Mrs. H. R. Quinn for very interesting communications.

APPENDIX A

In Eq. (17c) we write $O_3 = \gamma_1 (1 + \gamma_5)$ and use the identity

$$\gamma_5 \gamma_3 \gamma_8 = g_{583} \gamma_8 - g_{853} \gamma_3 - g_{853} \gamma_8 - i g_{853} \gamma_8 \gamma_3,$$

(A1)

where we adopt the convention $\epsilon_{1234} = 1$. The contribution of the first term in Eq. (A1) to K_1 is

$$\frac{\alpha}{2\pi} \left[\bar{u}_{\gamma_3} \gamma_8 (1 + \gamma_5) v_8 \right] \int \frac{d^4k}{(k^2 + i\epsilon)^2} \left[\frac{(p_2 \gamma_8 - p_1 \gamma_5) u_8}{(p_2 + p_1, k) u_8} \right].$$

(A2)

Neglecting the momentum transfer to the leptons $q = p_1 - p_2$ so that $T_{\alpha\beta}(p_1, p_2, k) = T_{\alpha\beta}(p_1, p_2, k)$, remembering that $\bar{u}_{\gamma_3} T_{\alpha\beta}(p_1, p_2, k) u_8$ is a combination of axial-vector terms, and noting that after integration over k we have only at our disposal the four-vectors $p_{\alpha\beta}$, γ_3, and γ_4, we see that (A2) reduces to an expression of the form (17c), provided that terms of order q are neglected. Identical conclusions hold for the other contributions of (A1).

APPENDIX B

In this Appendix we discuss continuity properties of some Feynman integrals with reference to Eq. (18c) and the discussion thereafter. As an illustration we consider the following special form for $S_{\alpha\beta\gamma\delta}^{(b)}$:

$$S_{\alpha\beta\gamma\delta}^{(b)} \rightarrow g_{\alpha\beta\gamma\delta} A^2/(A^2 - k^2),$$

(B1)

where $l_{\alpha\beta}$ is independent of k and A is a constant such that $A \gg E$. Equation (B1) satisfies the condition that $S^{(b)}$ is finite as $k_{\mu} \rightarrow 0$. Its particular structure has been

24 If real photons are undetected, there may be additional contributions from the nonclassical contributions of the inner bremsstrahlung. As it stands, Eq. (21) refers to a hypothetical experiment in which only soft photons are undetected.
