Search for Magnetic Monopoles in Lunar Material Using an Electromagnetic Detector*

Ronald R. Ross, Philippe H. Eberhard, and Luis W. Alvarez

Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720

Robert D. Watt

Stanford Linear Accelerator Center, Stanford, California 94305

(Received 23 April 1973)

Our search for magnetic monopoles in lunar materials has been concluded with the exploration of an additional 11.5 kg of material returned by the Apollo 11, 12, and 14 missions, using a modified version of our electromagnetic detector. Again, no magnetic monopole was detected. Combining these results with the results of our previous experiment, we set an upper limit of 1.7×10^{-4} monopoles/g for the density of isolated monopoles in the lunar surface and improve our upper limits set for the monopole flux in cosmic rays and for monopole pair-production cross section.

I. INTRODUCTION

Our search for magnetic monopoles in 8 kg of lunar material has been reported. The search has been continued in more lunar material returned by the Apollo 11, 12, and 14 missions. The result is still negative and the new experiment permits improvement of the upper limits derived in Ref. 1 for the monopole density in the lunar sample, for the monopole flux in cosmic rays, and for cross sections of pair production by incident cosmic-ray protons.

II. THE EXPERIMENT

The search technique was the same as the one used in Ref. 1. The lunar material was divided into 46 samples and the magnetic charge g of each sample was measured independently. The detector used to measure the magnetic charge has been modified in an attempt to save on liquid-helium consumption but its principle is still the same, relying on the current-change ΔI induced in a superconducting circuit traversed by a magnetically charged object. The circuit is represented schematically in Fig. 1 (see Ref. 2) and described in more detail in a separate report. A very sensitive magnetometer consisting of a SQUID (superconducting quantum interference device) coupled to a 1000-turn coil is used now to measure the current change in the circuit. Certain values of ΔI cannot be detected because of the noise in the magnetometer signal and because its response is a periodic function of ΔI. Therefore, to minimize the domain of undetected charges, several tests with different numbers of passes N_p were needed. We used a series $N_p = 1, 2, 4, 8$, and 16. However, there are two distinct regions of magnetic charge that would have escaped detection and hence this fact restricts the range of magnetic charge to which our search applies.

Restriction (a): magnetic charges that are too small to give a signal larger than the noise. Using an arbitrary criterion of five standard deviations of signal above noise, this amounts to a charge range of $g < 0.4 g_0$, where g_0 is the minimum Dirac monopole charge:

$$g_0 = \frac{h c}{2e}$$

in Gaussian units. Restriction (b): magnetic charges that have just the right size to cause the magnetometer to show no change due to its periodic response. For our equipment this restriction amounts to $g = n \times 36.0 \times g_0$, where n is an integer and 36.0 is a property of our equipment.

Those restrictions are explained in more detail in Ref. 2. They do not appreciably affect the validity of our search, since any monopole compatible with Dirac's theory escapes restriction (a), and since restriction (b) applies only to magnetic charges of a considerable magnitude.

III. RESULTS

In Fig. 2, we plot the measured value g_{max} of the magnetic charges g of each sample, determined by a least-squares technique using all measurements on a given sample. Within the error due to the magnetometer noise, it represents the value of the real magnetic charge modulo $36.0 g_0$. Tables I to III list each sample with its NASA identification number, weight, nature, and magnetic charge as we have measured it.

From Fig. 2 one sees that we found no magnetic charges g_{max} significantly different from zero in
the samples. We conclude that there are no magnetic monopoles consistent with Dirac's theory [except possibly for restriction (b) above], or at least that the number of south and north poles are such that they cancel in each sample.

A small portion of the lunar material was also searched for monopoles of charge $36g_0$, using the detector in a desensitized mode as described in Ref. 2. This portion comprised samples 2, 17, and 19. The result was also compatible with a zero magnetic charge for each of the three samples. Here restriction (a) still applies but, combining the result of the normal test procedure and the one due to the desensitized mode, we reduce restriction (b) to charges near multiples of $36g_0$ and $305g_0$ at the same time. That less-restrictive condition of our search applies to samples 2, 17, and 19 only.

IV. INTERPRETATION

Combining these results and those reported in Ref. 1, we compute an upper limit for the density of monopoles in the lunar surface material. It is less than 1.7×10^{-4} monopole/g for a 95% confidence level, using the same computation as in Ref. 1, i.e., including the correction for equal north- and south-pole charges in a sample.

From the upper limit of the density, we compute the upper limit for the flux of monopoles in cosmic rays as a function of energy for different values of N, the effective magnetic charge in units of g_0 as defined in Ref. 1. Also, the computation is described in Ref. 1. Adjustment for varying exposure ages of the samples has been made and all samples have been taken to have a mixing depth of 1000 g/cm2.4-6 Our upper limits for the monopole flux in cosmic rays together with comparable limits set by other experiments7,8 using different techniques are shown in Fig. 3 (see Refs. 7 and 8).

Because of the correlation between north- and south-pole density distributions when pairs of them are produced (as explained in Ref. 1), we compute the new limit for the monopole density due to pair

\begin{table}
\centering
\begin{tabular}{cccc}
\hline
Sample number & NASA number & Weight (g) & Type a & \(E_{\text{max}} \) b \\
\hline
1 & 14163.0 & 259.4 & F & -0.05 \\
2 & 14163.0 & 239.9 & F & 0.09 \\
3 & 14163.0 & 299.5 & F & 0.01 \\
4 & 14163.0 & 142.9 & F & -0.02 \\
5 & 14163.0 & 268.3 & F & 0.01 \\
6 & 14163.0 & 299.6 & F & 0.02 \\
7 & 14163.0 & 223.8 & F & 0.00 \\
8 & 14163.0 & 282.2 & F & 0.00 \\
9 & 14258.0 & 198.5 & F & -0.09 \\
10 & 14258.0 & 215.1 & F & 0.08 \\
11 & 14259.0 & 199.0 & F & 0.06 \\
12 & 14259.0 & 224.6 & F & 0.00 \\
13 & 14163.0 & 250.6 & F & -0.02 \\
14 & 14002.15 & 301.0 & F & 0.04 \\
15 & 14163.0 & 206.5 & F & -0.01 \\
16 & 14259.0 & 198.1 & F & -0.06 \\
17 & 14163.0 & 288.0 & F & 0.07 \\
18 & 14259.8 & 301.5 & F & 0.05 \\
19 & 14163.0 & 286.4 & F & 0.01 \\
20 & 14163.1 & 34.3 & F & -0.13 \\
21 & 14259.0 & 207.3 & F & -0.10 \\
22 & 14163.0 & 248.6 & F & -0.02 \\
23 & 14163.0 & 232.3 & F & -0.02 \\
24 & 14321.60 & 261.0 & R & -0.00 \\
25 & 14259.0 & 196.1 & F & 0.06 \\
26 & 14003.16 & 301.0 & F & 0.07 \\
27 & 14259.0 & 192.5 & F & -0.01 \\
28 & 14321.61 & 105.0 & R & -0.04 \\
29 & 14163.0 & 243.0 & F & -0.01 \\
30 & 14163.0 & 238.8 & F & 0.06 \\
31 & 14163.0 & 263.2 & F & 0.06 \\
\hline
\end{tabular}
\caption{Apollo 14 samples and measured magnetic charge.}
\end{table}

a F stands for fine material of grain size less than 1 mm; R stands for rocks and chips.

b The units of \(E_{\text{max}} \) are \(g_0 \) (see Eq. (1)).
TABLE II. Apollo 11 samples and measured magnetic charge.

<table>
<thead>
<tr>
<th>Sample number</th>
<th>NASA number</th>
<th>Weight (g)</th>
<th>Type</th>
<th>g_{meas}</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>10 072.19</td>
<td>40.26</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>10 017.74</td>
<td>107.52</td>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 021.36</td>
<td>29.98</td>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 061.2</td>
<td>32.89</td>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 017.81</td>
<td>98.98</td>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 085.105</td>
<td>28.13</td>
<td>R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a F stands for fine material of grain size less than 1 mm; R stands for rocks and chips.

b The units of g_{meas} are g_5 [see Eq. (1)].

production by incident cosmic-ray protons, using only the 6.81 kg of fines from Apollo 14 materials, the 2.02 kg from Apollo 12, and that 7.9 kg from Apollo 11 analyzed in Ref. 1. The selection corresponds to an arbitrary size limit of less than 1 mm for particles in the samples used. The maximum density is then 2.0 x 10^{-4} monopole/g for a 95% confidence level. Our upper limits for the cross section of pair production along with comparable limits set by other recent experiments 7-9 using different techniques are shown in Fig. 4.

In Ref. 1 (Table IV) we listed the properties assumed for the monopoles that condition their detection by our search; they are still valid here. In addition, there are the restrictions (a) and (b) mentioned above.

V. CONCLUSION

The lunar soil was a highly desirable place to search for magnetic monopoles, as evidenced by the limits placed on their production cross section in Fig. 4 from the analysis of about 20 kg of material. The search was carried out in such a way that even a single isolated monopole of the minimum charge compatible with the Dirac theory

would have been unambiguously detected by its magnetic charge. The accumulated evidence against the existence of isolated magnetic monopoles is by now very great, and the hope to detect them can be held out only in experiments even more sensitive than this one.

ACKNOWLEDGMENTS

We wish to thank John Taylor for his excellent and sustained technical support of this experiment, Roscoe Byrns for his engineering talent in the design and construction of our detector, and Professor Lorin Vant-Hull for his decisive contributions to the design of our SQUID. In addition we thank Maurilio Antuna, Jr., and Glenn Eckman for valuable technical support, Leo Foley, Benedict Galik, Edmond Lee, and Phil Smith for help during the running of the experiment, and Hagop Hagopian

FIG. 3. Upper limit (95% confidence level) on the flux of cosmic monopoles as determined in recent monopole searches. A from this work, B from Ref. 7, C from Ref. 8.

FIG. 4. Upper limit (95% confidence level) on monopole pair-production cross section in proton-nucleon collisions as determined in recent monopole searches. A from this work, B from Ref. 7, C from Ref. 8, D from Ref. 9.
TABLE III. Apollo 12 samples and measured magnetic charge.

Sample number	NASA number	Weight (g)	Type	\(\mu \) a	Sample number	NASA number	Weight (g)	Type	\(\mu \) a																																																																																																																													
35	12 065.88	49.82	R		41	12 021.101	3.91	R		42	12 021.96	9.92	R		43	12 070.150	15.05	R		44	12 006.3	3.03																																																																																																																
36	12 021.75	3.40	R			35	325.88	0.04		36	12 021.75	3.40	R		37	12 033.1D	3.50	R		38	12 021.158	0.80	R		39	12 021.1D	3.50	R		40	12 002.1A	2.42	R		41	12 021.101	3.91	R		42	12 021.127	4.01	R		43	12 021.158	0.80	R		44	12 021.110	4.04	R		45	12 021.113	2.34	R		46	12 021.106	2.65	R		47	12 021.107	2.89	R		48	12 021.153	1.70	R		49	12 021.159	0.01	R		50	12 021.117	2.65	R		51	12 021.123	10.61	R		52	12 021.110	2.89	R		53	12 021.157	2.69	R		54	12 021.117	2.65	R		55	12 021.123	10.61	R		56	12 021.110	2.89	R		57	12 021.110	2.89	R		58	12 021.110	2.89	R		59	12 021.110	2.89	R		60	12 021.110	2.89	R	

\(\mu \) a a F stands for fine material of grain size less than 1 mm; R stands for rocks and chips.

\(\mu \) b The units of \(\mu \) are \(\text{g}_\text{e} \) (see Eq. (1)).
for technical help. For support from the Lunar Re-
ceiving Laboratory we thank in particular John
Annexstad, Dr. Mike Duke, Leo Villarreal, and
Brock Westover.

This experiment would not have been possible
without the work of astronauts Neil A. Armstrong,
Edwin E. Aldrin, Jr., Michael Collins, Charles
Conrad, Jr., Richard F. Gordon, Jr., Alan Bean,
Alan B. Shepard, Stuart A. Roosa, and Edgar D.
Mitchell, who brought back the lunar samples ana-
lyzed.

*Work done under the auspices of the U. S. Atomic
Energy Commission and NASA Contract No. NASA
9-8806.

1P. H. Eberhard, R. R. Ross, L. W. Alvarez, and R. D.
for references to other monopole searches.

2P. H. Eberhard, R. R. Ross, and J. D. Taylor,
Lawrence Berkeley Laboratory Report No. LBL-1732,
unpublished.

3J. E. Zimmerman and A. H. Silver, Phys. Rev. 141,
387 (1966).

4The exposure ages used were 500 (Ref. 1), 360 (Ref. 5),
and 425 million years (Ref. 6) for Apollo 11, 12, and
14 samples, respectively. (The estimated mixing depths
using the published ages of crystallization were 1000,
1260, and 1275 g/cm² for Apollo 11, 12, and 14,
respectively, so using 1000 g/cm² for the cutoff will
make only a small change of our flux limits for high
energy, and the reliability of the mixing depths is not
certain enough to warrant their inclusion.)

5H. Hintenberger, H. W. Weber, and N. Takaoka,
A. Yaniv, G. J. Taylor, S. Allen, and D. Heymann,

6G. Turner, J. C. Huneke, F. A. Podosek, and G. J.

7H. Kolm, F. Villas, and A. Odian, Phys. Rev. D 4,
1266 (1971).

8H. L. Fleisher, H. R. Hart, Jr., I. S. Jacobs, P. B.

9I. T. Gurevich, S. Kh. Khakimov, V. P. Martemianov,
A. P. Mishakova, L. A. Makar’ina, V. V. Orgurtzov,
V. G. Tarasenko, L. A. Chernishova, L. M. Barkov,
M. S. Zolotorev, V. S. O hapkin, and N. M. Tarakanov,

PHYSICAL REVIEW D VOLUME 8, NUMBER 3 1 AUGUST 1973

Certification of Three Old Cosmic-Ray Emulsion Events as \(\Omega^- \) Decays and Interactions

Luis W. Alvarez
Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720

(Received 10 April 1972; revised manuscript received 3 May 1973)

In the "pre-accelerator years," when large stacks of emulsion were exposed to cosmic rays at high
altitude, three events were found in which \(K^- \) mesons were emitted from slowly moving particles. The
\(\Omega^- \) is the only presently known particle that can give rise to a \(K^- \) when moving at nonrelativistic
speed, but none of the three events has until now been clearly identified as an \(\Omega^- \). One of
the cosmic-ray events (Eisenberg, 1954) has been incorrectly interpreted as an \(\Omega^- \) decaying in flight; it is
now shown to be an interaction in flight of an \(\Omega^- \) with a silver nucleus. The second event is a
clear-cut example of an \(\Omega^- \) decaying in orbit, bound to an emulsion nucleus. The third event is quite
complicated, but can be unambiguously attributed to the decay of an \(\Omega^- \) atomically bound to an \(N^\pi \)
nucleus, followed by a collision of the daughter \(\Lambda \) with the \(N^\pi \), in which the compound system then
fragments into \(\Lambda C^\pi + p + n \). The mass of the \(\Omega^- \) as determined by each of the last two events (Fry
et al., 1955) agrees closely with the mean of all bubble-chamber events.

I. INTRODUCTION

In 1962, when Gell-Mann\(^1\) predicted the proper-
ties of the \(\Omega^- \), including its unique decay mode
into a \(K^- \) meson, three cosmic-ray events were
known\(^2\) that could most easily be explained by the
decay of a heavy hyperon into a \(K^- \) meson. The
hyperon masses calculated from the two cleanest
events (Eisenberg, and Fry No. 2) differed by
about 50 MeV, when the errors could scarcely have
been more than 2 MeV in either case. The third
event (Fry No. 1) was complicated by a pair of
related "evaporated prongs" that made the inter-
pretation unclear, and the mass apparently un-
certain by about 20 MeV.

Many high-energy physicists believed that the