On Symmetries Shared by Strong and Weak Interactions

Abraham Pais

Institute for Advanced Study, Princeton, New Jersey

I

T is a general characteristic of weak interactions that they violate parity. It is a general characteristic of all known weak leptonic transitions that they violate parity maximally. This maximal violation is accounted for by the so-called two-component neutrino structure of the weak lepton interactions.

In the first investigations of nonleptonic decays, where

\[\Lambda \rightarrow p + \pi^- \] (1)

was studied, this maximal trend seemed to persist.\(^1\) However, the \(\Sigma \) decays

\[\Sigma^+ \rightarrow n + \pi^+ \] (2)
\[\Sigma^+ \rightarrow \Lambda + \pi^- \] (3)
\[\Sigma^- \rightarrow n + \pi^- \] (4)

showed something new in this respect. In reactions (2) and (4), the degree of parity violation is quite small.\(^2\) Thus, optimal parity violation is certainly no general rule for nonleptonic processes. The mode of \(\Sigma_0^\pm \), on the other hand,\(^3\) shows, like the \(\Lambda \) decay, again nearly maximal \(s, \bar{p} \) interference.

We can say something more than just that \(\Sigma_+ \) and \(\Sigma_- \) are nearly conserving if we invoke the \(\Delta T = \frac{1}{2} \) rule. In what follows, the apparently good approximation is made that this rule is strictly valid for nonleptonic processes, without regard as to whether deviations from the rule are of purely electromagnetic origin or not. The question of whether this rule also applies to leptonic processes does not concern us here; experimental information on this last point is quite limited.

The amplitudes for reactions (2)–(4) each have generally an \(s \) and a \(p \) component. If we assume invariance under time reversal and neglect small final state interactions, the \(A \)'s can be considered as vectors in a real \((s, p)\) plane. The \(\Delta T = \frac{1}{2} \) rule implies that \(A^+ \), \(A^- \), and \(A^0 \) form a triangle in this plane.\(^4\) Experimental results are not only compatible with this condition but, more specifically, they imply the following. The parity properties of \(\Sigma_+ \) and \(\Sigma_- \) mean that \(A^+ \) and \(A^- \) are nearly aligned along the \(p \) or \(s \) axes. The

\[\Delta T = \frac{1}{2} \] rule now says that if \(A^+ \) is aligned along the \(p \) axis, then \(A^- \) is aligned along the \(s \) axis or vice versa.

In other words, with respect to the reactions (2) and (4), the particles \(\Sigma^+ \) and \(\Sigma^- \) do not only behave as if they each have “almost” a well-defined parity with respect to \(\pi \)-nucleon systems, but moreover these two respective parities are opposite to each other.\(^5\)

The truly remarkable nature of these parity phenomena comes only then fully to light if we consider the influence of the strong interactions on these weak processes. As an example, consider the following virtual transitions by which \(\Sigma^- \) may proceed:

\[S \rightarrow W \rightarrow S \]

\[\Sigma^- \rightarrow \Lambda + \pi^- \rightarrow p + 2\pi^- \rightarrow n + \pi^-, \] (5)
\[S \rightarrow W \rightarrow S \]

\[\Sigma^- \rightarrow \Sigma^+ + 2\pi^- \rightarrow n + \pi^+ + 2\pi^- \rightarrow n + \pi^- \]. (6)

Here \(S \) or \(W \) above an arrow means that the transition in question is a strong or a weak one.\(^6\) \(S \) transitions conserve parity. In Eq. (5) the \(W \) link is known to be strongly parity violating (at least on the mass shell), yet the net result of the sequence (5) must be parity conserving—unless there are cancellations with other sequences. In Eq. (6) the \(W \) link is nearly parity conserving. To fix ideas, let us suppose that \(\Sigma_0^+ \) is a \(p \)-wave decay. Then, with respect to this channel, \(\Sigma^+ \) has even parity relative to nucleons. As \(\Sigma^+ \) also has even parity relative to \(\Sigma^- \), it follows that the sequence (6) produces a \(p \)-wave contribution to \(A^- \). Yet, as we have seen, \(A^- \) should be almost purely an \(s \)-wave amplitude if, as was assumed for a moment, \(A^+ \) is a \(p \)-wave amplitude. Thus, we would like to cancel or inhibit the sequence (6). And so on.

Thus, this \(\Sigma \) puzzle has the following features: (a) we meet somewhat unexpectedly with near parity conservation in certain weak interactions; (b) the channels \(\Sigma_0^+ \) and \(\Sigma^- \) have opposite relative parity; (c) the strong interactions seem effectively to avoid, as it were, to use many opportunities to mix up strongly parity violating with nearly parity conserving channels, or to mix up weak parity conserving channels of opposite parity. Clearly then, this puzzle can be solved only if in some sense the weak and the strong interactions cooperate to maintain certain orderly patterns.

\(^3\) Reactions (2)–(4) will be denoted as \(\Sigma_+^+, \Sigma_0^+, \) and \(\Sigma_- \), respectively. The amplitudes for reaction (1)–(4) will be called \(A_{+}, A_{+}, A_{-}, \) and \(A_{-} \).
\(^5\) At the time of writing it is not known which of the two channels \(\Sigma_0^+, \Sigma_- \) is \(s \) wave, which is \(p \) wave.
\(^6\) Here a weak link need not be taken in the sense of perturbation theory but may itself be considered as properly modified by the presence of strong interactions.
Various authors7 have approached this parity problem essentially by assuming that there exist highly specific strong virtual transitions which are dominant over all others in these reactions. According to this view, the parity properties of the nonleptonic decays are two or more or less related accidents. Owing to our present inability to handle the detailed dynamics of strong interactions, it can neither be denied nor definitely be asserted that this is the correct approach. However this may be, it should be emphasized that the more qualitative line of thought which is about to follow is by no means orthogonal to the dynamical considerations just mentioned. These ideas are contained in recent publications,8,9 their content is now briefly paraphrased. This work builds further on contributions by d'Espagnat and Prentki10 and by Treiman.11

The main idea is to consider the possibility that the \(\Lambda \) and \(\Sigma \) decays give us perhaps a first qualitative indication for the need of a refinement of the current description in terms of isotopic spin \(T \) and strangeness \(S \) only. Expressed differently, it is explored if these processes could be understood better in terms of new approximate selection rules which are in accord with but more specific than \(\Delta T=0, \Delta S=0 \) for strong, \(\Delta T=\frac{1}{2}, \Delta S=1 \) for weak nonleptonic processes.

At this point we digress for a moment to note that experiment has revealed3 a further interesting property of the \(\Sigma \) triangle, namely, that \([A^+]/[A^-]6 \approx 12 \). According to the foregoing this implies an approximate equality of rates of an s-wave compared to a p-wave reaction. This is an important clue which cannot have anything to do with symmetry arguments, however.5,9 In fact, a simple example shows12 that this approximate equality of rates must be somewhat of an accidental consequence of the particular value of the \(\Sigma \)-nucleon mass difference. It would seem that the near-one magnitude of the \(\Lambda \)-asymmetry parameter is a similar accident.13 It should further be noted that the two main predictions of the theory to be developed [see Eqs. (15) and (16)] are independent of the magnitude ratio \([A^+] /[A^-]6 \).

Thus, there is at least no logical objection to proceed in two stages: to consider the parity questions first and separate and thereupon to inquire how more specific arguments may lead to the understanding of the near equality of the various \(\Sigma \) rates. Here only the first stage is discussed.

Let us now return to the question of approximate selection rules. The strong conservation law \(\Delta T=0 \) is the expression of the symmetry property called charge independence. Thus, more refined rules would have to be the expression of symmetries stronger than charge independence, but compatible with \(\Delta T=0 \). The weak violation law14 \(\Delta T=\frac{1}{2} \) states that the nonconservation of \(T \) comes about in a quite specific manner. Likewise, we seek for a specific violation law of the stronger symmetry in weak processes in a specific manner, but compatible with \(\Delta T=\frac{1}{2} \).

It is known that the weakest symmetry14 stronger than charge independence is the so-called doublet approximation or restricted symmetry, which is sketched in a moment. It should directly be stated, however, that this doublet symmetry has been shown15 to be not at all useful for a wide class of strong reactions, at least in the energy regime explored by recent experiments. These reactions are associated hyperon \(K \) production, \(K \) scattering, and \(K \) production in hyperon absorption. It must therefore be asked if the reconsideration in the present context of the doublet picture amounts to letting a dead skeleton out of a closet. This may in fact very well be true, but it is not necessarily true. For, first of all, the fact that the doublet language is not useful in the mentioned reactions does not necessarily prove that this symmetry does not exist anywhere.16 Secondly, the doublet approximation turns out to be a possibly useful starting point for the considerations to follow. Now, reactions (1)-(4) are distinct from the reactions just mentioned in that they do involve hyperons explicitly but \(K \) particles only virtually. While we have for the present no definite answer, we would nevertheless like to raise the question: Could it be that strong symmetries become more manifest whenever one has to integrate over all (virtual) \(K \)-particle effects? This by no means implies that all \(K \)-baryon forces are weak compared to \(\pi \)-baryon forces. There is ample evidence that this is not the case, and it may therefore generally be considered as well established that no arguments of approximate symmetry may rest on the assumption of relative weakness of \(K \) vs \(\pi \).

8 A. Pais, Nuovo cimento 18, 1003 (1960).
9 A. Pais, University of California Rept. UCRL 9460 and Phys. Rev. 122, 317 (1961). In this paper the relations of the present considerations with those of reference 7 are also studied.
11 S. Treiman, Nuovo cimento 15, 916 (1960).
12 Consider a particle \(Y \) (mass \(M \)) which decays into a nucleon (mass \(m \)) and a \(\pi \) (mass \(\mu \)) via \(C \gamma Y \rightarrow \pi \pi \), and a particle \(Y' \) (mass \(M \)) which decays likewise via \(C \gamma Y' \rightarrow \pi \pi \). If \(M \geq m + \mu \). If \(M \) is such that the nucleon is nonrelativistic, the ratio of decay rates is

\[
\frac{1}{16 C \gamma} \left(\frac{M+m}{M} \right)^{2} \left[\frac{M^{2}-(m+\mu)^{2}}{m^{2}M^{2}(M-m)^{2}} \right].
\]

If \(M \) corresponds to the \(\Sigma \) mass, this ratio is unity for \(C_{2} \equiv 1, 2C_{2} \) (an interesting ratio if in itself). If, by way of illustration, \(M \) is taken to be the \(\Lambda \) mass, then for the same \(C \), the ratio of rates becomes \(\approx 4 \). It is in this sense that one may be led to consider \(|A^{+}| \approx |A^{-}| \) as somewhat accidental. Similarly, if one considers the asymmetry parameter \(\alpha \) for the decay induced by \(C \gamma Y \rightarrow \pi \pi \), one finds again a very sensitive dependence of \(\alpha \) on the mass \(M \) of \(Y \).

13 I believe that it is not just a matter of semantics to say that expressions "an invariance law is violated" are no more than temporary expedients which actually mean that the law in question is not properly stated. From this view, it is the major task of theoretical particle physics to interpret all particle phenomena in terms of exact laws.
14 A. Pais, Phys. Rev. 110, 1480 (1958).
15 A. Pais, Phys. Rev. 110, 574 (1958).
16 By way of analogy, the existence of irreversible processes does not prove that the basic laws are noninvariant with respect to time reversal.
couplings. It is at least gratifying that the considerations to follow have been shown\(^8\) to be independent of such assumptions.

Let us now discuss the doublet approximation by making an analogy. Consider nonrelativistically the \(^{2S+1}S\) state of the deuteron. In the absence of all spin-dependent interactions, these states would be degenerate. While in the split situation only the total spin is a good quantum number, the proton and neutron spins separately are conserved in the degenerate situation. Let us now look similarly upon the (triplet + singlet) \(\Sigma\Lambda\) system with \(T=1, 0\). Put

\[
T = \mathbb{I} + K,
\]

\(\text{(7)}\)

where \(I\) and \(K\) each are spin \(\frac{1}{2}\) operators. The doublet approximation amounts to the neglect of the \(\Sigma\Lambda\) mass difference or, more generally, precisely to assuming that \(I\) and \(K\) are separately conserved. The \(\Sigma\Lambda\) states are now rearranged to simultaneous eigenstates of \(I\) and \(K\) as follows:

\[
N_2 = \begin{pmatrix} \Sigma^+ \cr \Sigma^- \end{pmatrix}, \quad N_3 = \begin{pmatrix} \Sigma^0 \cr \Sigma^- \end{pmatrix}
\]

\(\text{(8)}\)

\[
Y^0 = (\Lambda - \Sigma^0)/2, \quad Z^0 = (\Lambda + \Sigma^0)/\sqrt{2}.
\]

\(\text{(9)}\)

Again invoking the deuteron analogy, it is clear and it can be shown in more detail\(^9\) that this procedure is then meaningful only if the parity of \(\Sigma\) relative to \(\Lambda\) is even. This \(\Sigma\Lambda\) parity has so far not been determined. If it would turn out to be odd, all that follows would be irrelevant.

The upper (lower) components of \(N_2\) and \(N_3\) have \(I_3 = +\frac{1}{2}(-\frac{1}{2})\), while \(N_2(N_3)\) have \(K_3 = +\frac{1}{2}(-\frac{1}{2})\). The remaining baryons

\[
N_1 = \begin{pmatrix} p \cr n \end{pmatrix}, \quad N_4 = \begin{pmatrix} \Lambda^- \cr \Sigma^- \end{pmatrix}
\]

\(\text{(10)}\)

are doublets to begin with. We wish Eq. (7) to be true also for those doublets. Hence, we put one of the two spin operators on the right-hand side of Eq. (7), say \(K\), equal to zero for those doublets.\(^{17}\) Then \(T = I = \frac{1}{2}\) for \(N_1\) and \(N_4\). The spin \(I\) is called the doublet spin.

Each doublet interacts with the \(\pi\) field. From our assignments for the nucleons, it follows that

\[
T = I = 1, \quad K = 0 \text{ for } \pi \text{ mesons.}
\]

Of course, this assignment, once made, is also to hold for the interaction of the other doublets with \(\pi\) mesons. The dynamical condition for the \(\pi\) couplings to respect the doublet approximation is\(^{18}\) that the coupling of \(\pi\) to \(N_3\) has the same strength as the coupling of \(\pi\) to \(N_2\).

The \(K\) field couples \(N_1\) to \(\langle N_2, N_3 \rangle\) and \(N_4\) to \(\langle N_2, N_3 \rangle\). As \(\langle N_1, N_2 \rangle\) have \(K = 0\), it follows that

\[
T = K = \frac{1}{2}, \quad I = 0 \text{ for } K \text{ mesons.}
\]

\(\text{---}\)

\(^{17}\) From the structure of the \(K\) interactions, one can conclude that it is not possible to put \(K = 0\) for nucleons, \(I = 0\) for cascades.

\(^{18}\) Deviations from the doublet approximation can be obtained by adding a term \(S^{(0)}(\Delta I = \pm 1, 0; \Delta K = \pm 1, 0)\) and such that \(\Delta T = 0\).
where S is the strong part ($\Delta I = \Delta K = 0$) while $W^{(0)}$ and $W^{(1)}$ are the weak parts with $\Delta I = 0$, 1, respectively, and both with $\Delta K = \frac{1}{2}$. Now observe the following properties of reactions (2)–(4):

$$
\Sigma^+ \text{ decays: } \Delta I_3 = 0; \quad \Sigma^- \text{ decay; } \Delta I_3 = 1.
$$

(13)

Hence, Σ^- decay proceeds via the part $S^{(0)} + W^{(1)}$ of the dynamics. Thus, if $W^{(1)}$ conserves parity, then Σ^- decay is parity conserving modulo the doublet symmetry, without any further ado.

The situation is more complex for Σ^+ decays for which $\Delta I_3 = 0$, and hence both $\Delta I = 0$ and 1 may contribute. Consider first $\Sigma^+ \rightarrow p + \pi^0$ which is strongly parity violating. Its contribution from $W^{(1)}$ alone conserves parity in virtue of our condition just imposed in the discussion of Σ^- decay. Let us now assume that also $W^{(0)}$ gives a parity conserving contribution, but such that if $W^{(1)}$ gives a pure p (or s) amplitude, then $W^{(0)}$ gives a pure s (or p) amplitude. Then Σ^+ is indeed strongly parity violating. Moreover, $W^{(0)}$ gives a parity conserving amplitude for Σ^+_3 and, as is desired, Σ^+_2 and Σ^-_2 have opposite parity.

It may be noted that any parity violating interaction can be written as the sum of two separately parity conserving interactions. What is particular to the structure (12) is that these two separate parts are at the same time labeled by distinct doublet spin properties. Thus, in the present line of thought, a link is envisaged between spatial reflection and isotopic properties of interactions. One is here reminded of the link between P and C, which is presumed valid for all weak interactions.

How far have we come? Only $W^{(1)}$, not $W^{(0)}$, contributes to Σ^-_2 and in a parity conserving way. $W^{(1)}$ and $W^{(0)}$ both contribute to Σ^+_2 which violates parity because $W^{(0)}$ and $W^{(1)}$ give opposite parity contributions. $W^{(0)}$ gives a contribution to Σ^+_2 which conserves parity and gives an opposite parity in Σ^+_4 as compared to Σ^-_2. There remains one problem. $W^{(1)}$ can in general also contribute to Σ^+_4, but clearly this contribution should be negligible in order to keep Σ^+_4 pure. Thus, we have to impose an additional condition on $W^{(1)}$.

The nature of this additional condition has been investigated. Let us call $A_{(3)}^+$ that part of the amplitude A^+ of reaction (2) which is due to the effect of $W^{(1)}$ (in the presence of strong interactions). $A_{(3)}^+$ is a function of the masses m_N and m_2 and of the decay momentum transfer Δ. It has been shown that under suitable conditions an additional invariance argument may be applied to $W^{(1)}$ which has the consequence that

$$
A_{(3)}^+(m_N, m_2, \Delta) = 0 \quad \text{for } m_N = m_2 \text{ and fixed } \Delta.
$$

(14)

This limit property would then especially be of great help if it could further be shown that the amplitudes depend only weakly on the Σ-nucleon mass difference (for fixed Δ). In addition, it has been shown that there exist classes of diagrams for which $A_{(3)}^+$ vanishes without any further restriction of the type $m_N \rightarrow m_2$. It should be noted that both for the validity of Eq. (14) and in the discussion of diagrams just mentioned, the global condition need be satisfied that the absolute value of the π-nucleon strength equals the strength of the $\pi - N_A$ (and thus the $\pi - N_B$) coupling. A further study of the minimal conditions to be imposed on $W^{(1)}$ is in progress.

Just as the $\Delta T = \frac{1}{2}$ rule establishes relations between certain decay amplitudes, so the “$\Delta I = 0$, 1” rule establishes stronger relations which tie the Σ and Λ decays together. The following two results are valid with no further assumption than the structure (12) of the interaction provided only that the additional condition on $W^{(1)}$ which we referred to a moment ago is indeed satisfied:

(a) upon correction for the difference in phase volume in Σ compared to Λ decay, the following rate relation holds,

$$
R(\Sigma^+ \rightarrow p + \pi^0) \sim 2R(\Lambda \rightarrow p + \pi^-),
$$

in qualitative agreement with experiment;

(b) if the asymmetry parameters in reactions (1) and (3) are denoted by α_4 and α_6, then

$$
\alpha_4 = -\alpha_6.
$$

(16)

We also mention a result on cascade decay. Again because the Λ in Eq. (11) is a member of two doublets, it follows from the $\Delta I = 0, 1$ rule that cascade decay is parity violating in the same approximation that Σ^+_2 and Σ^-_2 are parity conserving. To relate the helicity σ_z of reaction (11) to α_4 is possible only if global symmetry conditions obtain, in which case one shows that

$$
|\sigma_z| = |\alpha_4|.
$$

(17)

The reason for the remaining ambiguity in sign is the following. The Σ-decay amplitude is additively composed of the contribution from $W^{(0)}$ and that of $W^{(1)}$ (in either case in the presence of $S^{(0)}$). Suppose that we have a definite expression for $W^{(0)}$ and $W^{(1)}$ which satisfies all invariance requirements. This gives a definite relative sign for σ_z and α_4. If we now change by -1 the phase of Σ relative to nucleon to nucleon either only in $W^{(0)}$ or only in $W^{(1)}$, then the invariance conditions turn out to be still valid. But this change of phase changes also the relative sign of σ_z and α_4. Thus, the sign ambiguity in Eq. (17) can be resolved.

9 See reference 9, Sec. II.C. In Eq. (14), m_N and m_2 are the nucleon and Σ mass, respectively.

10 See reference 9, Sec. VI.

12 See reference 9, Sec. IV. In the earlier papers (see references 8, 10, and 11), the stronger relation $\sigma_z = \alpha_4$ was obtained. In reference 11 the weak interaction was supposed to be purely of the form $W^{(0)}$, and it was shown in reference 8 that this implies $\sigma_z = \alpha_4 = 0$ if global invariance arguments are brought to bear. In reference 8 it had not yet been appreciated that the sign ambiguity in Eq. (17) is compatible with all invariance requirements.
only by further dynamical arguments concerning
the structure of the strangeness changing weak
interactions.\(^{23}\)

Thus far we have assumed that the nonleptonic
decay rule \(\Delta T = \frac{1}{2}\) is strict. There are relatively small
electromagnetic deviations from this rule which lead
to \(\Delta T = \frac{3}{2}\) (and higher) transitions. The most important
known experimental deviation from \(\Delta T = \frac{1}{2}\) is the very
existence of the decay

\[
K^+ \rightarrow \pi^+ + \pi^0,
\]
which has been found to be inhibited by a factor
\(~1/200\) compared to \(K_{e2}\) decay. It is not clear whether
this ratio can be accounted for merely by elec-
tromagnetic connections to \(\Delta T = \frac{1}{2}\). In this connection it is
perhaps of some interest to note that the doublet
picture provides us with a nonelectromagnetic way to
inhibit \(\Delta T = \frac{3}{2}\) (and higher transitions).

This is seen as follows. The reaction (18) has
\(\Delta K = \frac{1}{2}, \Delta I = 2\). As \(\Delta T = \Delta I + \Delta K\), we can, for example,
consider a vector composition to \(\Delta T = \frac{3}{2}\). Consider now a
decay interaction with \(\Delta K = \frac{3}{2}, \Delta I = 1, \Delta T = \frac{3}{2}\). Even
though this is a \(\Delta T = \frac{3}{2}\) coupling, reaction (18) remains
forbidden in the doublet approximation as the \(\Delta K\)
and \(\Delta I\) of the interaction do not match the \(\Delta K\) and \(\Delta I\)
of the decay \(K_{e2}\). However, if we now consider the
deviations from the doublet symmetry,\(^{18}\) the \(\Delta T = \frac{3}{2}\)
nature of the coupling remains intact but its \((\Delta I, \Delta K)\)
properties no longer survive. Hence, the decay \(K_{e2}\)
can take place due to the breakdown of the doublet
approximation. It remains to be seen, however, if it is
more than an amusing coincidence that the square of
the dimensionless parameter \((m_s - m_l)/m_s\) which
characterizes this breakdown is just \(~1/200\).

\(^{23}\) After the completion of the paper mentioned in reference 9,
 It was learned that \(\Xi\) decay is indeed strongly parity violating and
that \(a_1\) and \(g_1\) have opposite sign. See W. Fowler, R. Birge, Ph.

Finally, a few remarks on the consequences of the
present ideas, if correct, with respect to leptonic
processes. There seem to exist tensions, as it were,
between two qualitative ideas. One is the \(\Delta T = \frac{1}{2}\) rule,
the other the (over-all current) \(X\) (over-all current)
structure of the totality of weak interactions. For
example, when these ideas are synthesized, the question
of the neutral lepton currents arises.\(^{24}\) This tension is
aggravated only if the structure (12) of the nonleptonic
decay interactions is correct. It is very easy to see\(^{24}\) that
it is impossible to have at the same time a nonleptonic
decay coupling consisting of two separately parity
conserving but clashing parts, \(W^{(0)}\) and \(W^{(1)}\), and also
retain the (over-all current) \(X\) (over-all current) picture
in its present form; one idea is fatal to the other.

In conclusion, there is the following important
question. Let us suppose for a moment that the con-
siderations which have been presented are not totally
wrong, and that there does indeed exist some underlying
doublet symmetry in the strong and weak interactions.
What then is the dynamical mechanism that effectively
breaks this symmetry when \(K\) particles appear ex-
licitly? What is the influence of this mechanism on
the nonleptonic hyperon decays? We have no definite
answers to these questions, but we do want to say that
the new resonance or particles of which we have heard
so much in the past few days give one new food for
thought also about these problems. In particular, it
may be recalled\(^{15}\) that one of the assumptions under
which doublet symmetries have been discussed was
the completeness of the particle spectra. Moreover, if
the object \(K^*\) has \(T = \frac{1}{2}\), a coupling \(K^{*} \rightarrow K\pi + \text{c.c.}\) is
just of a kind which effectively breaks down the doublet
approximation. But we have not yet digested the new
findings from this point of view.

\(^{24}\) For a survey see, e.g., reference 8, discussion subsequent to
Eq. (16).