Indefinite-Metric Quantum Theory of Genuine and Higgs-Type Massive Vector Fields

Noboru NAKANISHI

Research Institute for Mathematical Sciences
Kyoto University, Kyoto 606

(Received August 25, 1972)

On the basis of the indefinite-metric vector field theory proposed previously, Johnson's proposition that the physical mass of a vector field tends to zero as its bare mass goes to zero, is shown to be valid if the vector field couples with a charged scalar field in the minimal interaction. In the case of the theory of spontaneously broken gauge invariance, the reason why the vector field acquires a non-zero mass in spite of the above theorem is clarified. The theory of a vector field which is massive owing to the spontaneous breakdown of gauge invariance is consistently formulated in the framework of the indefinite-metric quantum field theory. In this formalism, both renormalizability and the unitarity of the physical S-matrix are self-evident.

§ 1. Introduction

Recently, the present author1,2),\textsuperscript{8) has proposed an indefinite-metric theory of a massive vector field such that as its mass goes to zero the theory smoothly tends to the Landau-gauge quantum electrodynamics.3,4) As one of important consequences of this theory, we can reasonably show the validity of Johnson's proposition5,6) that if the bare mass of the vector field U_{μ} goes to zero, its physical mass must also tend to zero, provided that there are no other massless physical particles, under the assumption that the current j_{μ} is conserved and does not explicitly depend on U_{μ}.

On the other hand, in connection with Weinberg's theory of leptons,9) much attention has been paid to the spontaneous breakdown of gauge invariance in the massless vector field theories. Several years ago, Higgs and others7) noted that if gauge invariance of the theory is spontaneously broken, the massless vector field acquires a non-zero mass, but then Goldstone bosons do not appear in the Coulomb gauge because we do not have manifest covariance, which is necessary for the proof of the Goldstone theorem.8) If one reconsiders this situation in a covariant gauge, in which we have to introduce indefinite metric, Goldstone bosons appear but they become unphysical. This interesting phenomenon is now called the Higgs phenomenon. Recently, 't Hooft5) has applied it to the Yang-Mills

\textsuperscript{8) Johnson's reasoning was based on the conventional massive vector field theory whose massless limit is non-existent.
field in order to construct a renormalizable theory of massive charged vector fields.a) B. W. Lee10 has made a detailed study of the Higgs phenomenon in the theory of a neutral vector field which couples with a charged scalar field (Higgs model). All these recent investigations are made in the Feynman functional-integral formalism.

The purpose of the present paper is to analyze the Higgs phenomenon on the basis of our indefinite-metric theory of a vector field. We first extend our proof of Johnson's proposition to the case in which the neutral vector field U_μ couples with a charged scalar field (§ 2). Then we encounter an apparent dilemma between Johnson's proposition and the Higgs phenomenon. In order to resolve this paradox, we investigate a solvable model, which is essentially the zeroth approximation to the Higgs model (§ 3). The reason for the dilemma is found to be a special character of j_μ in the case of the spontaneously broken gauge theory. Finally, the full Higgs model is studied (§ 4). We clarify why Goldstone bosons become unphysical in such a way that the unitarity of the physical S-matrix is not violated. The main results obtained by B. W. Lee10 are reproduced in quite a transparent way.

§ 2. Genuine massive vector field

In this section, we consider a neutral vector field U_μ, which couples with a charged scalar field ϕ. We assume that the interaction between them is the so-called minimal interaction. The Lagrangian density \mathcal{L} of the system is given by

$$\mathcal{L} = -\frac{1}{4} (\partial^\mu U^\nu - \partial^\nu U^\mu) (\partial_\mu U_\nu - \partial_\nu U_\mu) + \frac{1}{2} m^2 U_\mu U^\mu + B \partial^\mu U_\mu + \mathcal{L}_\phi$$

with

$$\mathcal{L}_\phi = (\partial^\mu + ig U^\mu) \phi^* (\partial_\mu - ig U_\mu) \phi + F(\phi^* \phi).$$

Here, B is an auxiliary scalar field having negative norm; m and g denote the bare mass of U_μ and the bare coupling constant, respectively; F is a quadratic real polynomial; a dagger stands for hermitian conjugation and the Minkowski metric employed is $(1, -1, -1, -1)$.

The field equations for U_μ and B are

$$\partial^\nu U_\nu = 0,$$

$$(\Box + m^2) U_\mu - \partial_\mu B = j_\mu$$

with $\Box = \partial^\mu \partial_\mu$. Here the current

$$j_\mu = -\delta \mathcal{L}_\phi / \delta U^\mu$$

$$= -ig [\phi^* \partial_\mu \phi - (\partial_\mu \phi^*) \phi] - 2g^2 \phi^* \phi U_\mu$$

a) We note, however, that this theory is not a genuine Lagrangian field theory because one has to introduce \textit{ad hoc} Feynman's fictitious quanta. On the other hand, Weinberg's idea is based on the Lagrangian formalism.
is conserved:
\[\partial^* j_\mu = 0, \quad (2.6) \]
as is easily confirmed, but it explicitly depends on \(U_\mu \). From (2.4), (2.3) and (2.6), we have
\[\Box B = 0. \quad (2.7) \]

The canonical conjugates of \(U_l (l = 1, 2, 3), U_0, \phi \) and \(\phi^\dagger \) are
\[\Pi_l = \partial \mathcal{L} / \partial \dot{U}_l = \dot{U}_l - \partial_t U_l, \]
\[\Pi_0 = \partial \mathcal{L} / \partial \dot{U}_0 = B, \]
\[\pi = \partial \mathcal{L} / \partial \dot{\phi} = \dot{\phi}^\dagger + ig U_0 \phi^\dagger, \]
\[\pi^\dagger = \partial \mathcal{L} / \partial \dot{\phi}^\dagger = \dot{\phi} - ig U_0 \phi, \quad (2.8) \]
respectively, where a dot stands for differentiation with respect to time. The equal-time commutators for canonical variables are
\[\{ U_\mu, \Pi_\nu \} = i \delta_\mu^\nu \delta (x - y), \]
\[\{ \phi, \pi \} = \{ \phi^\dagger, \pi^\dagger \} = i \delta (x - y), \quad (2.9) \]
and vanishing commutators for all other combinations. In terms of field variables, the equal-time commutators are rewritten as *
\[\{ U_k (x), \dot{U}_l (y) \}_{x = y} = i \delta_{kl} \delta (x - y), \]
\[\{ U_0 (x), B (y) \}_{x = y} = i \delta (x - y), \]
\[\{ \dot{U}_k (x), B (y) \}_{x = y} = i \delta^* \delta (x - y), \]
\[\{ B (x), \phi^\dagger (y) \}_{x = y} = 0 \phi (y) \delta (x - y), \]
\[\{ B (x), \phi^\dagger (y) \}_{x = y} = - g \phi^\dagger (y) \delta (x - y), \]
\[\{ \phi (x), \phi^\dagger (y) \}_{x = y} = \{ \phi^\dagger (x), \phi (y) \}_{x = y} = i \delta (x - y), \quad (2.10) \]
and vanishing commutators for all other combinations of \(U_k, U_0, \dot{U}_l, B, \phi, \phi^\dagger \) and \(\dot{\phi}^\dagger \). In order to calculate the equal-time commutators involving \(\dot{U}_0 \) or \(\dot{B} \), we have to make use of
\[\dot{U}_0 = \sum_k \partial_k U_k, \]
\[\dot{B} = \sum_k \partial_k \dot{U}_k - (\Delta - m^2) U_0 - j_0, \quad (2.11) \]
the relations which follow from (2.3) and (2.4). Since \(\mathcal{L}_\phi \) is of the minimal interaction, we have

\[* \quad \partial^* = \partial / \partial x_\mu. \]
Indefinite-Metric Quantum Theory

\[
\dot{j}_0 = -\frac{\delta L_s}{\delta \phi} - \frac{\delta L_s}{\delta \dot{\phi}} - ig\phi - ig\phi^* \frac{\delta L_s}{\delta \dot{\phi}^*} = ig(\pi \phi - \phi^* \pi^*). \tag{2.12}
\]

Hence the canonical commutation relations imply that

\[
[U_\phi(x), j_0(y)]_{x_0 = y_0} = 0,
\]
\[
[U_\phi(x), j_\phi(y)]_{x_0 = y_0} = 0,
\]
\[
[B(x), j_0(y)]_{x_0 = y_0} = 0. \tag{2.13}
\]

In order to find four-dimensional commutation relations involving \(B\), we re-write (2.7) as\(^*\)

\[
B(x) = -\int dz [\dot{D}(x - z)B(z) + D(x - z)\dot{B}(z)], \tag{2.14}
\]

where \(z_0\) is a free parameter. Setting \(z_0 = y_0\) in (2.14), with the aid of (2.11), (2.10) and (2.13), it is straightforward to obtain

\[
[B(x), U_\phi(y)] = i\hbar \delta(x - y), \tag{2.15}
\]
\[
[B(x), B(y)] = -i\hbar^2 \delta(x - y) \tag{2.16}
\]

and \([B(x), j_\phi(y)] = 0\). Because of manifest covariance, therefore, we have

\[
[B(x), j_\phi(y)] = 0. \tag{2.17}
\]

Since \(B(x)\) satisfies a free-field equation (2.7), we can consistently define\(^*\) its positive frequency part \(B^{(+)}(x)\). The constraint for the physical states is

\[
B^{(+)}(x) |\text{phys}\rangle = 0. \tag{2.18}
\]

From (2.17) we see that \(j_\phi(y) |\text{phys}\rangle\) is also a physical state.

Let \(|\Omega\rangle\) be the true vacuum. From manifest covariance, local commutativity and the Lorentz condition (2.3), we have a spectral representation:

\[
\langle \Omega | [U_\phi(x), U_\phi(y)] |\Omega\rangle = -i \int ds dp (p_\mu + s^{-1} \partial_\nu \partial^\nu) A(x - y, s) + i m \hbar \delta_\mu \delta_\nu \partial^\mu \partial^\nu D(x - y). \tag{2.19}
\]

The parameter \(\hbar\) is determined as follows. By making use of (2.4), (2.16) and (2.17), we obtain

\[
(\Box^\nu + m^\nu)(\Box^\mu + m^\mu) \langle \Omega | [U_\phi(x), U_\phi(y)] |\Omega\rangle = \langle \Omega | [j_\phi(x), j_\phi(y)] |\Omega\rangle + i m \hbar \delta_\mu \delta_\nu \partial^\mu \partial^\nu D(x - y). \tag{2.20}
\]

Because of (2.6), we should have

\[^*\] To define \(B^{(+)}(x)\), replace \(D\) by \(D^{(+)}\) in (2.14).
N. Nakanishi

\[\langle Q| [j_\mu(x), j_\nu(y)] |Q \rangle = -i \int_0^\infty ds \delta(s) (g_{\mu\nu} + s^{-1} \partial_\mu \partial_\nu) \Delta(x-y, s) \]

(2.21)

with \(a > 0 \), provided that no massless \textit{physical} particles are present. On substituting (2.19) and (2.21) in (2.20), we find

\[\hbar = 1, \]

\[(s - m^2) \rho(s) = \tilde{\rho}(s). \]

(2.22)

From (2.19) together with (2.22) and the first commutator in (2.10), we find Johnson's formulas\(^\text{b}\)

\[\int_0^\infty ds \rho(s) = 1, \]

\[\int_0^\infty ds \rho(s)/s = m^{-1} , \]

(2.23)

where \(b = \min(a, m^2) \). From (2.23), we conclude that the physical mass \(m_{\text{phys}} \) of \(U_\mu \), which is a point spectrum of \(\rho(s) \), must tend to zero as \(m \to 0 \).

The above reasoning is applicable to any theory in which \(U_\mu \) couples with its source in the minimal interaction.

§ 3. Boulware-Gilbert model

The Lagrangian density of the Higgs model\(^\text{d}\) is essentially the same as (2.1) with \(m \to 0 \), though we here adopt the Landau-gauge formulation. All field equations and canonical commutation relations remain unchanged. The only difference consists in the non-vanishing vacuum expectation value of \(\phi \):

\[\langle Q| \phi(x) |Q \rangle = \nu/\sqrt{2} \neq 0 , \]

(3.1)

which was not used in the proof, presented in § 2, of Johnson's proposition that \(m \to 0 \) implies \(m_{\text{phys}} \to 0 \). Nevertheless, it is known that \(U_\mu \) acquires a non-zero physical mass \((m_{\text{phys}} \neq 0) \) at \(m = 0 \) in the Higgs model.

As usual, we set

\[\sqrt{2} \phi(x) = \nu + \phi(x) + i \chi(x) , \]

(3.2)

where \(\nu^* = \nu, \phi^* = \phi \) and \(\chi^* = \chi \), so that

\[\langle Q| \phi(x) |Q \rangle = \langle Q| \chi(x) |Q \rangle = 0 . \]

(3.3)

On substituting (3.2) in (2.2), we have

\[L_\phi = \frac{1}{2} M^2 U^* U_\mu + \frac{1}{2} \partial^\mu \phi \partial_\mu \phi + \frac{1}{2} \partial^\mu \chi \partial_\mu \chi - M U^* \partial_\mu \chi - \frac{1}{2} g U U^* \phi \partial_\mu \phi \]

\[+ g M U^* \phi \phi + g U^* (\chi \partial_\mu \phi - \phi \partial_\mu \chi) + F(\frac{1}{2} (\nu + \phi)^2 + \frac{1}{2} \chi^2) , \]

(3.4)

where

\[M = g \nu . \]

(3.5)
As the zeroth approximation to the Higgs model, we consider the case in which $g \to 0$ (and $F \to 0$) but M is kept finite. Since ϕ then decouples from the rest, we have an effective Lagrangian density

$$\mathcal{L}_0 = -\frac{1}{4} (\partial^\mu U^\nu - \partial^\nu U^\mu) (\partial_\mu U_\nu - \partial_\nu U_\mu) + \frac{1}{2} (m^2 + M^2) U^\mu U_\mu + B \partial^\mu U^\nu - MU^\mu \partial_\nu \chi + \frac{1}{2} \partial^\mu \partial_\nu \chi \chi .$$

This is essentially the model considered by Boulware and Gilbert as an example of a gauge-invariant massive vector field. Since this model is exactly solvable, in this section we analyze it in detail in order to see why the proof of $m_{\text{phys}} \to 0$ as $m \to 0$ does not apply.

The field equations are (2.3) and (2.4) together with

$$j_\mu = M \partial_\nu \chi - M^2 U_\mu$$

and

$$\Box \chi = 0 .$$

We may rewrite (2.4) with (3.7) as

$$\Box + m^2 + M^2) U_\mu - \partial_\mu (B + M \chi) = 0 .$$

From (3.9), (2.3) and (3.8), we have

$$B = 0 ,$$

whence

$$\Box (\Box + m^2 + M^2) U_\mu = 0 .$$

The field equations are thus the same as those in the free-field case having a mass squared $m^2 + M^2$ and an auxiliary field $B + M \chi$. But the constraint is still (2.18).

The equal-time commutators involving χ and/or $\dot{\chi}$ are as follows:

$$[U_\mu, \chi] = [U_\mu, \dot{\chi}] = 0 ,$$

$$[\dot{U}_\mu, \chi] = [\dot{U}_\mu, \dot{\chi}] = 0 ,$$

$$[B, \chi] = [B, \chi] = [\chi, \dot{\chi}] = 0 ,$$

$$[B, \chi] = -i M \delta(x - y) ,$$

$$[\chi, \dot{\chi}] = i \partial(x - y) .$$

Hence, by using (2.14), (2.11) and (3.7), it is easy to confirm (2.16) and (2.17). For completeness, we here write all four-dimensional commutation relations between fields:

$$[U_\mu(x), U_\nu(y)] = -i [g_\nu + (m^2 + M^2)^{-1} \partial_\nu \partial_\nu] \delta(x - y) (m^2 + M^2)

+ i (m^2 + M^2)^{-1} \partial_\nu \partial_\nu D(x - y) ,$$

A contrary statement was erroneously made in Ref. 1).
\[
[U_\mu(x), B(y)] = -i \partial^*_\mu D(x-y),
\]
\[
[B(x), B(y)] = -im^2 D(x-y),
\]
\[
[U_\mu(x), \chi(y)] = 0,
\]
\[
[B(x), \chi(y)] = -i MD(x-y),
\]
\[
[\chi(x), \chi(y)] = iD(x-y).
\]

Therefore, from (3.7) we have
\[
[j_\mu(x), j_\nu(y)] = M^2 \partial^*_\mu \partial^*_\nu [\chi(x), \chi(y)] + M^4 [U_\mu(x), U_\nu(y)]
\]
\[
= -iM^4 [g_{\mu\nu} + (m^2 + M^2)^{-1} \partial^*_\mu \partial^*_\nu] A(x-y, m^2 + M^2)
\]
\[
- im^2 M^2 (m^2 + M^2)^{-1} \partial^*_\mu \partial^*_\nu D(x-y).
\]

The remarkable point of the Boulware-Gilbert model is the existence of the term proportional to \(\partial^*_\mu \partial^*_\nu D(x-y) \) in the current-current commutator. This fact, which contradicts (2.21), is due to the presence of massless physical particles. Indeed, let
\[
\tilde{\chi}(x) = -M(m^2 + M^2)^{-1}[m^2 \chi(x) - MB(x)],
\]

since
\[
\Box \tilde{\chi}(x) = 0,
\]
\[
[\tilde{\chi}(x), B(y)] = 0,
\]
\[
[\tilde{\chi}(x), \tilde{\chi}(y)] = im^2 M^2 (m^2 + M^2)^{-1} D(x-y),
\]
\[
\tilde{\chi}(x) \text{ is massless, physical (i.e., } B^{(+)}(x) [\tilde{\chi}(y) | \Omega \rangle] = 0 \text{) and of positive norm.}^*)
\]

The intermediate states consisting of a \(\tilde{\chi} \) particle gives a non-zero contribution to \(\langle \Omega | [j_\mu, j_\nu] | \Omega \rangle \).

It is important to note that though \(\tilde{\chi}(x) \) is physical, as \(m \to 0 \) it tends to \(B(x) \) so that its norm tends to zero; therefore the \(\tilde{\chi} \) particles become unobservable. As remarked previously,\(^1\) \(B(x) \) is unphysical for \(m \neq 0 \), but it becomes physical for \(m = 0 \) because it then commutes with \(B(y) \). For \(m = 0 \), the massless unphysical field is
\[
X(x) = \chi(x) + \frac{1}{2} M^{-1} B(x);
\]
both \(B(x) \) and \(X(x) \) are of zero norm, but \([B(x), X(y)]\) is non-vanishing.

\section{Higgs-type massive vector field}

In § 3, we have seen that the reason why the physical mass of \(U_\mu \) can be non-zero as \(m \to 0 \) in the theory of spontaneously broken gauge invariance is the existence of massless physical particles, which are not identical with Goldstone

\(^*)\) The normalization of \(\tilde{\chi}(x) \) is chosen so as to account for the massless spectrum of \([j_\mu, j_\nu]\).
bosons. The crucial point is that as \(m \to 0 \) those massless physical particles become unobservable just like the quanta of the Coulomb interaction. Having understood the mechanism of yielding a non-zero physical mass, in this section we study the Higgs model by setting \(m=0 \) from the beginning. We rewrite \(U_\mu \) as \(A_\mu \) in order to stress \(m=0 \), and we consider the general covariant gauge by adding \(\frac{1}{2} \alpha B^2 \) to \(\mathcal{L} \) for the convenience of the comparison with B. W. Lee's work.\(^{10}\)

The field equations are

\[
\partial^* A_\mu + \alpha B = 0, \quad (4.1)
\]
\[
(\Box + M^2) A_\mu - (1 - \alpha) \partial_\mu B - M \partial_\mu \chi = J_\mu, \quad (4.2)
\]

with

\[
J_\mu = j_\mu + M^2 A_\mu - M \partial_\mu \chi
\]
\[
= -g[A_\mu (\psi^2 + \chi^2) + 2MA_\mu \phi + \chi \partial_\mu \phi - \phi \partial_\mu \chi]. \quad (4.3)
\]

Of course, \(\partial^* j_\mu = 0 \) but \(\partial^* J_\mu \neq 0 \). We still have\(^{**} \)

\[
\Box B = 0, \quad (4.4)
\]

but \(\chi \) no longer satisfies a free-field equation. The constraint (2.18) remains unchanged.

The equal-time commutators (2.10) remain valid if \(U_\mu \) and \(\phi \) are replaced by \(A_\mu \) and by \((1/\sqrt{2})(\nu + \phi + i\chi)\), respectively. Hence we have four-dimensional commutation relations

\[
[B(x), A_\mu(y)] = i\partial_\nu^* D(x-y), \quad (4.5)
\]
\[
[B(x), B(y)] = 0, \quad (4.6)
\]
\[
[B(x), \chi(y)] = -i[M + g\phi(y)] D(x-y), \quad (4.7)
\]
\[
[B(x), J_\mu(y)] = -igM \partial_\nu^* [\psi(y) D(x-y)]. \quad (4.8)
\]

From (4.7) and (4.8), we have

\[
\langle \Omega | [B(x), \chi(y)] | \Omega \rangle = -iMD(x-y), \quad (4.9)
\]
\[
\langle \Omega | [B(x), J_\mu(y)] | \Omega \rangle = 0, \quad (4.10)
\]

respectively. The non-vanishing of (4.9) is the important characteristic of the spontaneously broken gauge theory. From (4.9) together with (4.1), we must have

\[
\langle \Omega | [A_\mu(x), \chi(y)] | \Omega \rangle = i\alpha M \partial_\nu^* E(x-y), \quad (4.11)
\]

\(^*\) In his treatment, the Landau-gauge case is ill-defined in contrast with our formalism. For example, the proper self-energy part of \(A_\mu \) is singular at \(\alpha = 0 \) in his formalism.

\(^{**} \) If \(m \neq 0 \) and \(\alpha
eq 0 \), \(B \) becomes massive; every \(D(x-y) \) appearing in § 2 then is replaced by \(D(x-y, \alpha m^2) \).
because of manifest covariance and the vanishing equal-time commutators, where
\[E(x) = -(\partial/(\partial m^2))A(x, m^2)|_{m=0} \]
\[= -(8\pi)^{-1}e(x_0)\theta(x^2), \quad (4.12) \]
\[\Box E(x) = D(x). \quad (4.13) \]

As seen in § 3, \(A_\mu \) acquires a non-zero mass at least if \(g \) is small. Hence \(A_\mu \) contains no massless transverse components. From manifest covariance, local commutativity, (4.5) together with (4.1) and the equal-time commutators, we have a spectral representation
\[\langle \Phi | [A_\mu(x), A_\nu(y)] | \Phi \rangle = -i \int_0^\infty ds \rho(s) \left[(g_{\mu
u} + s^{-1}\partial_\mu \partial_\nu) A(x-y, s) - s^{-1}\partial_\mu \partial_\nu D(x-y) \right] - i\alpha \partial_\mu \partial_\nu E(x-y) \quad (4.14) \]
with \(\epsilon > 0 \).

Now, we consider the asymptotic fields. Since in-fields and out-fields can be discussed in the same way, for definiteness we consider in-fields alone. In order to avoid gauge complication, we first discuss the Landau-gauge case (\(\alpha = 0 \)). Suppose that
\[A_\mu(x) \rightarrow A_\mu^{\text{in}}(x), \quad B(x) \rightarrow B^{\text{in}}(x), \]
\[\psi(x) \rightarrow \psi^{\text{in}}(x), \quad \chi(x) \rightarrow \chi^{\text{in}}(x) \quad (4.15) \]
as \(x_0 \rightarrow -\infty \). Each in-field has to satisfy a free-field equation. Hence (4.5), (4.6), (4.9) and (4.11) with \(\alpha = 0 \) yield
\[[B^{\text{in}}(x), A_\nu^{\text{in}}(y)] = i\partial_\mu \chi^{\text{in}}(x-y), \quad (4.16) \]
\[[B^{\text{in}}(x), B^{\text{in}}(y)] = 0, \quad (4.17) \]
\[[B^{\text{in}}(x), \chi^{\text{in}}(y)] = -iMD(x-y), \quad (4.18) \]
\[[A_\mu^{\text{in}}(x), \chi^{\text{in}}(y)] = 0, \quad (4.19) \]
respectively. From (4.18) we see that \(\chi^{\text{in}}(y) \) must satisfy the d'Alembert equation, that is, the \(\chi \) field is massless. This fact represents that \(\chi \) is the Goldstone field. Hence \(\chi^{\text{in}}(x) \) has to satisfy
\[[\chi^{\text{in}}(x), \chi^{\text{in}}(y)] = i\gamma D(x-y), \quad (4.20) \]
where \(\gamma \) is some real dimensionless constant. The constraint for the physical in-states is
\[[B^{\text{in}}(x)]^{(+)}|_{\text{phys}} = 0. \quad (4.21) \]

From (4.18) we see that Goldstone bosons are unphysical.

Since
\[[B^{\text{in}}(x), V^{\text{in}}_\mu(y)] = 0, \quad (4.22) \]
where
\[V_{\mu}^{\text{in}}(x) = A_{\mu}^{\text{in}}(x) - M^{-1} \partial_\mu \chi^{\text{in}}(x), \]

the physical-state subspace is generated by the hermitian conjugates of \(\star \)
\[[V_{\mu}^{\text{in}}(x)]^{(+)}, \quad [\phi^{\text{in}}(x)]^{(+)}, \quad [B^{\text{in}}(x)]^{(+)} \]
from the vacuum. Since \(V_{\mu}^{\text{in}}(x) \) should satisfy a Klein-Gordon equation, it cannot contain a massless component. From (4.14) with \(\alpha = 0 \), the massless spectrum of \([A_{\mu}^{\text{in}}(x), A_{\nu}^{\text{in}}(y)] \) is \(i K \delta_{\mu\nu} D(x-y) \) with
\[K = \int_0^\infty ds \rho(s)/s. \]

Therefore, using (4.20) and (4.19), we find
\[\gamma = M^2 K. \]

Thus we should have
\[<\Omega| [\chi(x), \chi(y)]|\Omega> = i M^2 K D(x-y) + i \int_0^\infty ds \rho(s) A(x-y, s). \]

For \(\alpha \neq 0 \), we have to be careful of the invalidity of (4.15), as was noted by Källén in quantum electrodynamics. Indeed, the right-hand side of (4.11) is inconsistent with any free-field equation. The appearance of \(E(x-y) \) implies that there should exist dipole-ghost states. As is well known, however, the Gupta-Bleuler theory, which corresponds to \(\alpha = 1 \), involves no dipole ghosts. This dilemma is due to the breakdown of the operator manifest covariance of a non-Landau-gauge theory, as has been pointed out recently. As far as two-point functions are concerned, however, this trouble can be bypassed. Following Lautrup, we define an operator
\[A(x) = \frac{1}{4} A^{-1} [x_\mu \partial_\mu B(x) - \frac{1}{2} B(x)], \]

where \(A \) denotes the Laplacian. Though \(A(x) \) is not a Lorentz scalar, it satisfies
\[\Box A(x) = B(x), \]
\[[B(x), A(y)] = [A(x), A(y)] = 0, \]
\[[A_{\mu}(x), \partial_\nu A(y)] + [\partial_\mu A(x), A_{\nu}(y)] = i \delta_{\mu\nu} \partial_\tau D(x-y). \]

From (4.14), (4.30) and (4.31), we see that the vacuum expectation value of
\[\hat{\Lambda}_\mu(x) = A_{\mu}(x) + \alpha \partial_\mu A(x) \]
has no \(\alpha \)-dependent term, that is, it equals (4.14) without the last term. With
\(V_{\mu}^{\text{in}} \) and \(\phi^{\text{in}} \) are of positive norm and \(B^{\text{in}} \) is of zero norm. The zero-norm unphysical field
\[X^{\text{in}}(x) = X^{\text{in}}(x) + \frac{1}{4} M^{-1} B^{\text{in}}(x). \]
the aid of (4.5) and (4.9), we can show that
\[
\langle \mathcal{O} | M[A_\mu(x), A(y)] + [\partial_\mu A(x), \chi(y)] | \mathcal{O} \rangle = -iM \partial_\mu E(x-y).
\]
(4.33)
Hence if we define
\[
\tilde{\chi}(x) = \chi(x) + \alpha MA(x),
\]
(4.34)
then we have
\[
\langle \mathcal{O} | [\tilde{A}_\mu(x), \tilde{\chi}(y)] | \mathcal{O} \rangle = 0.
\]
(4.35)
Therefore, by defining \(A_\mu^{in}(x) \) and \(\chi^{in}(x) \) as the asymptotic fields of \(\tilde{A}_\mu(x) \) and \(\tilde{\chi}(x) \), respectively, the discussion of the in-fields reduces to that in the Landau-gauge case. Since from (4.9)
\[
\langle \mathcal{O} | [\chi(x), A(y)] + [A(x), \chi(y)] | \mathcal{O} \rangle = -iME(x-y),
\]
(4.36)
we have
\[
\langle \mathcal{O} | [\tilde{\chi}(x), \tilde{\chi}(y)] | \mathcal{O} \rangle = \langle \mathcal{O} | [\chi(x), \chi(y)] | \mathcal{O} \rangle - i\alpha M^2 E(x-y).
\]
(4.37)
Since the left-hand side of (4.37) should be identified with (4.27), we finally find
\[
\langle \mathcal{O} | [\chi(x), \chi(y)] | \mathcal{O} \rangle
\]
\[
= iM^2 KD(x-y) + i \int_{+\infty}^{0} ds \sigma(s) A(x-y, s) + i\alpha M^2 E(x-y)
\]
(4.38)
in the general covariant gauge. The Green's function counterparts of (4.14), (4.11) and (4.38) were given by B. W. Lee10 by calculating the proper self-energy parts by means of the Ward-Takahashi identities.

To sum up, we have shown that the neutral vector field theory of spontaneously broken gauge invariance can be consistently formulated in the framework of the indefinite-metric quantum field theory. We can avoid the use of complicated functional-integral technique completely. Our theory is manifestly renormalizable, and the unitarity of the physical S-matrix is self-evident because the constraint (2.18) persists at all time. The Goldstone field \(\chi \) is massless and unphysical, while the massless \(B \) field is physical but unobservable because of its zero norm just like the quanta of the Coulomb interaction.

Extension of our formalism to the non-Abelian gauge field will be formally straightforward,11 but we then encounter the difficulty that the constraint no longer persists.

References
4) B. Lautrup, Kgl. Danske Videnskab. Selskab, Mat.-fys. 35 (1967), No. 11.
Indefinite-Metric Quantum Theory

See also, B. W. Lee and J. Zinn-Justin, Phys. Rev. D5 (1972), 3121, 3137, 3155.

