Weak mass mixing, CP violation, and the decay of b-quark mesons

John S. Hagelin
Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138
(Received 11 June 1979; revised manuscript received 1 November 1979)

Weak mixing and CP parameters for the B_d-$
\bar{B}_d$ and B_s-\bar{B}_s systems are computed in the Kobayashi-Maskawa (KM) model and found to exceed previous estimates. New values for the KM angles are presented. Explicit calculation of Δf_{π} from the absorptive part of the $B^\pm \bar{B}^0$ mixing amplitude and a formalism for large CP violation are included.

I. INTRODUCTION

Ellis, Gaillard, Nanopoulos, and Rudaz¹ were first to point out the possibility of large CP-violating effects in neutral B systems. Since the interpretation of the T as $b\bar{b}$, the prospect of observing weak mass mixing and CP violation in B_d-\bar{B}_d decay has motivated several estimates of mixing and charge-asymmetry parameters, in the frameworks of both the Kobayashi-Maskawa (KM) model and Higgs exchange. Small predictions from these earlier estimates, especially in the context of the KM model, are not supported by the present work, which allows for larger effects.

Substantive methodological improvements over previous analyses contribute to these new findings. Section II presents an extension of the familiar mixing and CP formulas from kaon physics to accommodate the larger CP violation characteristic of B mesons. The unjustified use of an approximation for the CP impurity parameter ϵ valid near the origin is thereby avoided. In Sec. III, Δf_{π} is calculated directly from the absorptive part of the $2W^\pi$ exchange box diagrams, eliminating large errors from momentum mismatch in analyses based on decay channels. Section IV contains a reevaluation of the KM angles, based on precise expressions for kaon mixing. Section V summarizes B^\pm-\bar{B}^0 mixing and charge asymmetry with conclusions regarding their experimental detection. Details of the rarer B_d-\bar{B}_d decay are contained in an appendix.

II. PHENOMENOLOGY

A phenomenological description of the B^\pm-\bar{B}^0 system is provided by the mass and decay matrices $M - i\Gamma/2$. The phenomenological Hamiltonian in the flavor eigenbasis can be written

$$
\begin{pmatrix}
M - \frac{i}{2}\Gamma & M_{12} - \frac{i}{2}\Gamma_{12} \\
M_{12} + \frac{i}{2}\Gamma_{12} & M - \frac{i}{2}\Gamma
\end{pmatrix}
$$

(2.1)

The mass eigenstates

$$
B_{1,2} = \frac{1}{\sqrt{2}} \left[\left(1 + e^{i\theta} \right) B^0 \pm \left(1 - e^{i\theta} \right) \bar{B}^0 \right]
$$

(2.2)
correspond to eigenvalues

$$
M_{1,2} = M \pm \text{Re} \left(M_{12} \right), \\
\frac{1}{2} \Gamma_{1,2} = \frac{1}{2} \Gamma_{1,2} \pm \text{Im} \left(M_{12} \right).
$$

(2.3)

The CP impurity parameter ϵ is given by

$$
\epsilon = -\frac{\text{Re} M_{12} + \frac{i}{2} \text{Re} \Gamma_{12} + \left(\left(M_{12} - \frac{i}{2} \Gamma_{12} \right) \left(M_{12} - \frac{i}{2} \Gamma_{12} \right) \right)^{1/2}}{\text{Im} M_{12} + \frac{1}{2} \text{Im} \Gamma_{12}}.
$$

(2.4)

The experimental parameters for weak mixing and CP violation can be expressed in terms of the quantities r and φ due to Pais and Treiman²:

$$
r = \frac{\Gamma(B^0 - \chi^+ \ell^- \nu_\ell)}{\Gamma(B^0 - \chi^- \ell^+ \nu_\ell)} \left| \frac{1 - e^{i\theta}}{1 + e^{i\theta}} \right|^2 \frac{\Delta M^2 + (\Delta \Gamma/2)^2}{2 \Gamma^2 + \Delta M^2 - (\Delta \Gamma/2)^2},
$$

(2.5)

$$
\varphi = \frac{\Gamma(B^0 - \chi^+ \ell^- \nu_\ell)}{\Gamma(B^0 - \chi^- \ell^+ \nu_\ell)} \left| \frac{1 + e^{i\theta}}{1 - e^{i\theta}} \right|^2 \frac{\Delta M^2 + (\Delta \Gamma/2)^2}{2 \Gamma^2 + \Delta M^2 - (\Delta \Gamma/2)^2}.
$$

Denoting by l^2 the number of events of the type $(\chi^+ \ell^- \nu_\ell)(\chi^- \ell^+ \nu_\ell)$ coming from the production, sub-

2893 © 1979 The American Physical Society
sequent mixing, and decay of B^0-\bar{B}^0, one defines the mixing parameter $r_{2,3}$:

$$r_{2,3} = \frac{\Gamma_{12}^{+} + \Gamma_{12}^{-}}{\Gamma_{12}^{+} + \Gamma_{12}^{-} + \Gamma_{12}^{+} + \Gamma_{12}^{-}} = \frac{\gamma + \bar{\gamma}}{1 + \gamma + \bar{\gamma} + r}.$$

$$r_{2,3} = \frac{\Gamma_{12}^{+} - \Gamma_{12}^{-}}{\Gamma_{12}^{+} + \Gamma_{12}^{-} + \Gamma_{12}^{+} + \Gamma_{12}^{-}} = \frac{\gamma - \bar{\gamma}}{1 + \gamma + \bar{\gamma} + r}.$$

(2.6)

CP violation appears as a charge asymmetry in the number of these same-sign dilepton events. It is described by the parameter a:

$$a = \frac{\Gamma_{12}^{+} - \Gamma_{12}^{-}}{\Gamma_{12}^{+} + \Gamma_{12}^{-}} = 4 \text{ Re}(1 + |\epsilon|^2).$$

(2.7)

Finally, one can derive the total lepton charge asymmetry arising from the decay of conjugate mesons:

$$t = \frac{\Gamma_{12}^{+} - \Gamma_{12}^{-}}{\Gamma_{12}^{+} + \Gamma_{12}^{-}} = \frac{\gamma - \bar{\gamma}}{2 + \gamma + \bar{\gamma}}.$$

(2.8)

Equations (2.1)-(2.8) summarize the notation and phenomenological description of the neutral B system. Details concerning detection and background are found elsewhere in the literature.5

III. B^0-\bar{B}^0 MIXING AMPLITUDE

In the KM model, mixing results from the $2W$ exchange box diagrams (Fig. 1) which can be thought of as giving rise to an effective $\Delta B=2$ term in the Lagrangian. \mathcal{M}_{12} and Γ_{12} are related to the dispersive and absorptive parts of the mixing amplitude6 obtained by taking the matrix element of \mathcal{L}_{eff} between conjugate mesons:

$$M_{12}^{\pm} = \frac{i}{2} \Gamma_{12}^{\pm} = \frac{1}{2m_B} \langle \bar{B}^0 | -\mathcal{L}_{\text{eff}} | B^0 \rangle.$$

(3.1)

Estimates of M_{12} are usually obtained by saturating the matrix element implicit in (3.1) by the intermediate vacuum state. This amounts to using a valence quark wave function for quark operators in \mathcal{L}_{eff}, and is probably an overestimate of (3.1).6

Evaluation of Figs. 1(a) and 1(b) is simplified by ignoring the momentum dependence of the gauge propagators. In this case we have, from Fig. 1(a),

$$i\mathcal{G} = \sum_{i,j=\uparrow,\downarrow} \frac{G_F}{\sqrt{2}} \int \frac{d^4q}{(2\pi)^4} \bar{d}(k')\gamma^\mu (1-\gamma_5)\gamma^\nu (1-\gamma_5) b(p)$$

$$\times \bar{d}(k)\gamma_\nu (1-\gamma_5)\gamma^\mu (1-\gamma_5) b(p') \times q_\mu q_\nu - q_{\mu} - q_{\nu}$$

$$\times \frac{\xi_s}{(q^2 - m_i^2 + i\epsilon)} \times \frac{\xi_{\bar{s}}}{(q_{\bar{s}} - m_j^2 + i\epsilon)}.$$

(3.2)

Letting

$$\langle p+k \rangle = P_B^\mu [\text{or } \langle p-k \rangle = P_B^\mu \text{ in the case of Fig. 1(b)}],$$

(3.3)

$$i\mathcal{G} = \sum_{i,j=\uparrow,\downarrow} \frac{G_F}{\sqrt{2}} \int \frac{d^4q}{(2\pi)^4} \bar{d}(k')\gamma^\mu (1-\gamma_5)\gamma^\nu (1-\gamma_5) b(p) \bar{d}(k)\gamma_\nu (1-\gamma_5)\gamma^\mu (1-\gamma_5) b(p')$$

$$\times \xi_s \xi_{\bar{s}} \int_0^1 dx \left\{ \frac{iG_S^2}{16m_B^2} \left[x(1-x)m_B^2 - (1-x)m_i^2 + x_m_j^2 \right] \ln [-x(1-x)m_B^2 + (1-x)m_i^2 - x_m_j^2] \right\}$$

$$+ \left\{ \frac{iP_{\text{eff}}^2}{16n_B^2} [x(1-x)] \ln [-x(1-x)m_B^2 + (1-x)m_i^2 - x_m_j^2] \right\}.$$

(3.4)

In considering the Dirac structure, we find

$$\bar{d}(k')\gamma^\mu (1-\gamma_5)\gamma^\nu (1-\gamma_5) b(p) \bar{d}(k)\gamma_\nu (1-\gamma_5)\gamma^\mu (1-\gamma_5) b(p') = 16 \bar{d}(k')\gamma^\mu (1-\gamma_5) b(p) \bar{d}(k)\gamma^\mu (1-\gamma_5) b(p').$$

It is now useful to introduce the vacuum-intermediate-state assumption in the evaluation of matrix element (3.1), and notice that terms proportional to $m_B^2 G_d$ and $P_{\text{eff}}^2 P_{\text{eff}}$ give rise to identical contributions in the meson rest frame. Summing contributions from both diagrams with proper attention to color statistics then yields7

$$M_{12}^{\pm} = \frac{i}{2} \Gamma_{12}^{\pm} = \frac{4}{3} \left(\frac{1}{2m_B} \right)^2 \int_0^1 dx \left\{ 3x(1-x)m_B^2 - (1-x)m_i^2 + x_m_j^2 \right\} \ln [-x(1-x)m_B^2 + (1-x)m_i^2 - x_m_j^2]$$

$$\times \left[\frac{3x(1-x)m_B^2 + (1-x)m_i^2 + x_m_j^2}{} \right].$$

(3.5)
\[\Gamma_{12}^{2895} \] is obtained by replacing the logarithm by \(-i\pi\) and integrating over the domain of negative argument:

\[
\Gamma_{12}^{2895} = \frac{G_F^2 \beta_{\pi} m_B}{6\pi i} \left\{ \xi_1^2 m_B^2 \left(1 - \frac{4 m^2}{m_B^2} \right)^{1/2} + 2\xi_2 \xi_3 \left[m_B^2 \left(1 - 3 \frac{m^2}{m_B^2} + \frac{2 m_A^2}{m_B^2} \right) - m_c^2 \left(1 - \frac{m^2}{m_B^2} \right)^2 \right] + \xi_3 m_B^4 \right\},
\]

where the leading correction to the dominant contribution (proportional to \(\xi_2^2\)) has been maintained for reasons to follow. The dispersive calculation is most easily accomplished by expanding the logarithms in Eq. (3.5). One obtains

\[
\Gamma_{12}^{2895} = \frac{G_F^2 \beta_{\pi} m_B}{6\pi i} \left[\xi_1^2 m_B^2 + 2\xi_2 \xi_3 m_c^2 + O\left(m_A^4 \right) \right].
\]

We are led to the following conclusions:

1. \(\Gamma_{12}^{2895}\) is significantly smaller than previous estimates based upon an analysis of decay modes common to \(B_d\) and \(\bar{B}_d\).

2. The leading contributions to \(\Gamma_{12}^{2895}\) and \(M_{12}^{2895}\) share a common phase. Their contribution to \([\text{Eq. (2.4)}]\) is therefore purely imaginary—hence no contribution to \([\text{Eq. (2.7)}]\). This results in a substantial reduction in charge asymmetry, which is even more severe in the case of the \(B_s\)-\(\bar{B}_s\) (see Appendix).

3. Although the expressions for \(\Gamma_{12}^{2895}\) and \(M_{12}^{2895}\) as stated depend upon the intermediate vacuum state, the ratio \(\Gamma_{12}^{2895}/M_{12}^{2895}\), relevant to CP violation, does not. It depends on the relation (3.3), which is a reasonable approximation in light of the 5-quark mass.

Lastly, the decay width \(\Gamma_{12}^{2895}\) is estimated in the parton model by analogy with \(\mu\) decay:

\[
\Gamma_{12}^{2895} \approx \frac{G_F^2 \beta_{\pi} m_B}{192\pi^2} \left[\frac{1}{4} \left| c_1 c_2 s_3 + s_2 c_6 e^{i\delta} \right|^2 \left(2 + 3 c_1^2 + 3 s_1^2 c_2^2 \right) + s_1^2 s_3^2 \left(2 + 3 s_1^2 \right) + s_3^2 \left(2 + 3 s_1^2 \right) \right].
\]

Angular coefficients are obtained by summing over decay channels and including a phase-space suppression factor of \(\frac{1}{4}\) for final states with charm or taon. The common belief that gluon radiative corrections to \(\Gamma_{12}^{2895}\) are small extends immediately to \(\Gamma_{12}^{2895}\). The same is undoubtedly true of \(M_{12}^{2895}\).

IV. EXPERIMENTAL RESTRICTIONS ON KM ANGLES

The original calculation of the \(K^*-\bar{K}^0\) mixing amplitude by Ellis, Gaillard, and Nanopoulos is quoted in various places throughout the literature. The results of a rederivation with more specific attention to the angular dependence are now presented. These results are used to more accurately determine the allowed regions for the KM angles.

From a diagram analogous to Fig. 1(a),

\[
G_{\pi K} = \frac{-G_F^2}{2\pi i} \left[\gamma_{\mu} (1 - \gamma_3) \right] \left| s_1^2 \right|^2 \left[(c_1 c_2 s_3 + c_2 s_6 e^{i\delta}) \right] \left[m_{\pi}^2 + \left(3 - \frac{2 m_t^2}{m_H^2} \right) \right]
\]

\[
+ 2 c_1 c_2 (c_1 c_2 s_3 + c_2 s_6 e^{i\delta}) m_{\pi}^2 \left[\ln \frac{m_{\pi}^2}{m_t^2} - 1 \right] + c_1 c_2 m_{\pi}^2 \left[1 - \frac{3 m_{\pi}^2}{m_t^2} \right].
\]

For the purposes of the present analysis,

\[
G_{\pi K} = \frac{-G_F^2}{2\pi i} \left[\gamma_{\mu} (1 - \gamma_3) \right] \left| s_1^2 \right|^2 \left[(c_1 c_2 s_3 + c_2 s_6 e^{i\delta}) \right] m_{\pi}^2
\]

\[
+ 2 (c_1 c_2 s_3 + c_2 s_6 e^{i\delta}) m_{\pi}^2 \left[\ln \frac{m_{\pi}^2}{m_t^2} - 1 \right] + c_1 c_2 m_e^2.
\]

\(\Delta M_K\) follows trivially in the valence-quark approximation:

\[
\Delta M_K \approx 2 \text{Re} M_{12}^{2895} \approx \frac{G_F^2}{2\pi i} \left[\gamma_{\mu} (1 - \gamma_3) \right] \left| s_1^2 \right|^2 \left[c_1^2 c_2^2 m_e^2 + (c_1 c_2 s_3 + c_2 s_6 e^{i\delta}) \right] m_{\pi}^2 + 2 (c_1 c_2 s_3 + c_2 s_6 e^{i\delta}) m_e^2 \left[\ln \frac{m_{\pi}^2}{m_t^2} - 1 \right]
\]

\[
= \frac{G_F^2}{2\pi i} \left[\gamma_{\mu} (1 - \gamma_3) \right] s_1^2 \left[s_3, s_2, \cos \delta, \frac{m_{\pi}^2}{m_t^2} \right].
\]
This is nominally consistent with the experimental value\(^9\) of \(\Delta M_K = 3.52 \times 10^{-12}\) MeV for \(\tilde{\tau}\) equal to its minimum (slightly less than 1).\(^{10}\) Shrock, Treiman, and Wang\(^{11}\) evaluated \(\langle K \mid \mathcal{L}_{\text{eff}} \mid K \rangle\) in the framework of the MIT bag model with very reasonable results equal to about one-half those based on the intermediate vacuum. Within this framework, consistency of (4.3) with experiment requires \(\tilde{\tau} \approx 2\). Shrock et al. favor a factor of 2 uncertainty in their evaluation, suggesting an upper limit of \(\tilde{\tau} \approx 4\).

Experimental data on CP violation sets \(\text{Re} \langle K \mid \mathcal{L}_{\text{eff}} \mid K \rangle = (1.64 \pm 0.06) \times 10^{-3}\)\(^{12}\) This, along with known values for \(\Delta M_K\) and \(\Delta T_K\), implies that

\[
\frac{\text{Im} M_K^{\text{eff}}}{\text{Re} M_K^{\text{eff}}} \approx 6 \times 10^{-3} (\text{exp}) = \frac{2 s_2 s_3 c_2 \sin \delta (c_1 c_2 s_2^2 + c_2 s_3 s_4 \cos \delta) [m_1^2/m_2^2] + c_1 c_3 [\ln (m_4^2/m_5^2) - 1]}{\varepsilon}
\]

(4.4)

with \(\tilde{\tau}\) as defined in Eq. (4.3). This expression imposes a constraint on the KM angles which is independent of the vacuum-intermediate-state assumption. Equation (4.4), together with \(\tilde{\tau} \leq 4\) and \(s_4 < 0.3\) from Cabibbo universality,\(^{13}\) comprise the known constraints upon \(\theta_2, \theta_3,\) and \(\delta\).

Equation (4.4) is solved implicitly for \(s_2\) and plotted against \(s_3\) in Fig. 2. If \(\theta_1, \theta_2,\) and \(\theta_3\) are taken to lie in the first quadrant,\(^{14}\) then \(\sin \delta\) is constrained to positive values\(^{15}\) [Eq. (4.4)]. The two regions of physical interest are then distinguished by the sign of \(c_3\).

The dots in Fig. 2 represent the quantity \(\tilde{\tau}\), the dashed portions (\(\tilde{\tau} > 4\)) being inconsistent with Eq. (4.3). Thus \(\Delta M_K\) provides an upper bound on \(s_3\) of 0.4 for \(c_3 > 0\) and 0.6 for \(c_3 < 0\) and values of \(s_3\) consistent with Cabibbo universality. There is, however, no lower bound imposed on \(s_2\) from \(\Delta M_K\) unless \(\langle K \mid \mathcal{L}_{\text{eff}} \mid K \rangle^{\text{vac}}\) is definitively shown to be too large (and therefore \(\tilde{\tau}\) bounded above 1). The lower bound on \(s_2\) proposed by Shrock et al.\(^{11,16}\) is rather sensitive to variations in their upper limit for \(\langle K \mid \mathcal{L}_{\text{eff}} \mid K \rangle^{\text{vac}}\). There is, nonetheless, a weak lower bound on \(s_2\) from Eq. (4.4) and Cabibbo universality (Fig. 2) of \(s_2 > 0.001\).

\(\tilde{\tau}\) is bound from below at 0.002 (0.005 if \(c_3 > 0\)), although large values of \(s_3\) are consistent with the known physics. This last fact justifies the use of the extended CP formalism of Sec. II for \(b\)-quark mesons.

Shaded in Fig. 2 are values of \(s_2\) and \(s_3\) predicted by an O(10) grand unified model due to Georgi and Nanopoulos.\(^{17}\) The model would seem to require \(c_3 < 0\), since \(c_3 > 0\) corresponds to a region where \(\tilde{\tau} = 12\), requiring for consistency a six-fold reduction in \(\langle K \mid \mathcal{L}_{\text{eff}} \mid K \rangle\) from that of the MIT bag model.

A comparison between the value of \(s_2\) predicted by O(10) and that implied by Fig. 2 would provide a powerful test for the O(10) model. Unfortunately, this comparison is complicated by an extreme sensitivity of the O(10) \(\delta\) to minor variations in quark masses.

V. CONCLUSIONS

Figures 3 and 4 display \(B_s - \bar{B}_s\) mixing and charge asymmetry. Values of \(a\) are independent of \(f_B\) and the vacuum-intermediate-state assumption, and are hence reliable up to variations in \(m_1\). The figures shown for mixing are valid in the vacuum-intermediate-state assumption with \(f_B = 500\) MeV. A different assumption with regard to the matrix element will lead to correspondingly smaller values.

\(B_s - \bar{B}_s\) mixing is potentially complete. It is large throughout most of the \(c_3 < 0\) region, especially where the popular decay mode into charm proportional to \(|c_1 c_2 s_2 + s_3 c_6 e^{i \delta}|^2\) is somewhat suppressed (Fig. 4).\(^{18}\) The comparatively smaller mixing characteristic of \(c_3 > 0\) provides a plausible means of
experimentally determining the sign of c_1.

CP violation may also be appreciable—the charge asymmetry in the same-sign dilepton events can be large in favor of I^+ (Fig. 3). Chances of detection are unfortunately small since the largest CP violation occurs in regions of relatively little mixing. The total lepton charge asymmetry [18] is consequently bound below 0.01 if $c_2 < 0$, and is an order of magnitude smaller if $c_2 > 0$. Similarly, the B_s-\bar{B}_s mixes completely everywhere except where decay into charm is strongly suppressed—the only region for which CP violation is appreciable. Its contribution to the total charge asymmetry is consequently small.

In summary, although CP violation is potentially large, its experimental detection remains unlikely—a lack of overlap between regions of large mixing and CP violation restricts the total lepton charge asymmetry. The B_s-\bar{B}_s despite complete mixing, contributes little to the total charge asymmetry. Thus an observation of a total lepton-charge asymmetry in excess of 0.01, or in the direction of positive charge, would be evidence for an alternate means of CP violation.

ACKNOWLEDGMENTS

I am grateful to Howard Georgi for his invaluable insights and suggestions. I would also like to thank D. V. Nanopoulos, as well as S. Glashow, M. Machacek, D. Sutherland, and S. Weinberg, for valuable conversations. This research was supported in part by the National Science Foundation under Grant No. PHY77-22864.

APPENDIX: THE B_s-\bar{B}_s MIXING AMPLITUDE

The calculation of $M_{12}^{B_s}$ and $\Gamma^{B_s}_{12}$ follows that of M_{12}^{d} and Γ^{d}_{12} in Sec. III. $M_{12}^{B_s}$ is obtained from the dispersive part of diagrams analogous to Fig. 1. Defining new angular factors

$$\xi^L_4 = s_1^2 s_3 c_2,$$

$$\xi^L_6 = (c_1 c_2 c_3 - s_2 s_3 e^{-i\delta})(c_1 c_2 s_3 + s_2 c_2 e^{i\delta}),$$

FIG. 3. The same-sign dilepton charge asymmetry for B_s-\bar{B}_s decay is computed in the allowed angular regions. Numbers on curves represent values of a multiplied by 10^6.

FIG. 4. Mass mixing for the B_s-\bar{B}_s is computed in the allowed angular regions. Numbers on curves represent values of r_2 multiplied by 10^6. 20 W E A K M A S S M I X I N G, C P V I O L A T I O N, A N D T H E D E C A Y O F...
and
\[\xi_i' = (c_1 s_2 c_3 + c_2 s_3 e^{-i\delta})(c_1 s_2 s_3 - c_2 c_3 e^{i\delta}) \]
one obtains
\[M_{12}^B = \frac{G_F^2 m_B}{12\pi^2} \xi_i' \left(m_t^2 + \frac{3}{2} m_B^2 + m_B^2 \ln \frac{m_B^2}{m_t^2} \right). \]
(A1)
\[\Gamma_{12}^B \]
may be read directly from Eq. (3.6). Letting
\[\xi_i \to \xi_i' \]
it follows that
\[\Gamma_{12}^B = \frac{G_F^2 m_B}{6\pi} \left(\xi_i'^2 m_B^2 + 2 \xi_i' m_B^2 \right). \]
(A2)
The absence of strong angular suppression in the leading terms of these equations results in large mixing for the $B_s \overline{B}_s$. No deviation from complete mixing is observed except where ξ'_i and ξ_i are highly suppressed—in regions where the B^0 decays predominantly into pions. The nearly identical phases of (A_1) and (A_2) severely reduce $C\bar{P}$ violation, except where decay into pions is dominant. Since this region is one of restricted mixing, the total lepton charge asymmetry remains very small (<0.007). The $B_s \overline{B}_s$ adds little to the total charge asymmetry.