ON D^0--\bar{D}^0 MIXING AND CP VIOLATION

Ikaros BIGI 1,2

Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94305, USA

and

A.I. SANDA 3

Rockefeller University, New York, NY 10021, USA

Received 3 February 1986

Observable D^0--\bar{D}^0 mixing would strongly indicate New Physics. The MARK III group has found intriguing, though so far marginal evidence for $\text{Prob.}(D^0 \rightarrow \bar{D}^0) \sim 1\%$. Effects due to quantum statistics are highly important in properly interpreting the signal and treating the background. Here these effects are analysed in general. D^0--\bar{D}^0 mixing will also lead to like-sign dileptons in deep inelastic neutrino nucleon scattering. We point out that if $\text{Prob.}(D^0 \rightarrow \bar{D}^0) \sim 1\%$ holds then certain decays like $D^0 \rightarrow K_s \pi^0$ can exhibit CP asymmetries on the percent level. Extended Higgs (or technicolour) models with flavour changing neutral currents would be the only good candidates. Therefore we urge further experimental study along this direction.

1. Introduction. D^0--\bar{D}^0 mixing is being searched for by two different methods:

(i) Like-sign dileptons from semileptonic $D\bar{D}$ decays; various groups have obtained upper limits on $\text{Prob.}(D^0 \rightarrow \bar{D}^0)$ of at most a few percent [1].

(ii) Searching for D^0 decays into K^+ mesons. The MARK III collaboration has recently presented data [2] which can be interpreted as suggesting D^0--\bar{D}^0 mixing on the 1% level. Such an analysis in general suffers from the drawback that there exists another physics process leading to the same final state, namely doubly Cabibbo suppressed decays (hereafter referred to as DCSD). Unfortunately the strength of such more exotic decays has neither been measured before nor treated theoretically in a detailed way. This gap has to be filled, in particular since observable D^0--\bar{D}^0 mixing would signal new physics as explained later on.

This note is organized as follows: first we analyze the highly important consequences quantum statistics has on the strength of the signal sought -- D^0--\bar{D}^0 mixing -- and on the size of the background -- doubly Cabibbo suppressed D decays; then we apply a detailed theoretical analysis to DCSD; next we point out on which level D^0--\bar{D}^0 mixing will produce like-sign dileptons in neutrino scattering; then the phenomenology of CP violation in D^0 decays is discussed; finally we estimate the size of D^0--\bar{D}^0 mixing expected in the standard model and address the issue of how physics beyond the standard model would affect D^0--\bar{D}^0 mixing.

2. Quantum statistics and D^0--\bar{D}^0 mixing. The strength of D^0--\bar{D}^0 mixing can conveniently be characterized in the following way:

$$\text{Prob.}(D^0 \rightarrow \bar{D}^0) \equiv \frac{BR(D^0 \rightarrow k^- + X)}{BR(D^0 \rightarrow k^+ + X)} = \frac{1}{2}(x^2 + y^2),$$

with $x = \Delta m/\Gamma$, $\Delta m = |m_2 - m_1|$, $y = \Delta \Gamma/2\Gamma$, $\Delta \Gamma = |\Gamma_2 - \Gamma_1|$. However in most cases the D mesons are produced pairwise. It was first pointed out in ref. [3]...
and later treated in a more general situation in ref. [4] that because of quantum statistics one has to consider whether the $D\bar{D}$ pair is produced with relative orbital angular momentum even or odd.

The initial $D^0\bar{D}^0$ state with momentum k_1, k_2 and time of decay t_1, t_2 is given by

$$|i\rangle = |D^0(k_1, t_1)\bar{D}^0(k_2, t_2)\rangle + (-1)^l |D^0(k_2, t_2)\bar{D}^0(k_1, t_1)\rangle,$$

with $l = \text{relative orbital angular momentum}$ and

$$|D^0(t)\rangle = g_+(t)|D^0\rangle + (q/p) g_-(t)|\bar{D}^0\rangle,$$

$$|\bar{D}^0(t)\rangle = (p/q) g_-(t)|D^0\rangle + g_+(t)|\bar{D}^0\rangle,$$

$$p/q = (1 + e)/(1 - e),$$

$$g_\pm = \frac{1}{2} [\exp(i m_1 t - \frac{1}{2} \Gamma_1 t) \pm \exp(i m_2 t - \frac{1}{2} \Gamma_2 t)].$$

Furthermore let f_1, f_2 be two possible final states in neutral D decays with the corresponding amplitudes as follows:

$$A(D^0 \rightarrow f_i) = A_i,$$

$$A(\bar{D}^0 \rightarrow f_i) = \bar{A}_i, \quad i = 1, 2.$$

In the limit of $x, y \ll 1$, which is quite appropriate for $D^0-\bar{D}^0$ mixing, one then obtains

$$\text{rate}(|D^0\bar{D}^0|) \propto (1/2\Gamma^2)(x^2 + y^2)(A_1 A_2 - \bar{A}_1 \bar{A}_2)^2$$

$$+ (2 - x^2 + y^2)(A_1 \bar{A}_2 - A_2 \bar{A}_1)^2$$

$$\propto (1/2\Gamma^2)(3 \gamma^2 + \gamma^2)(A_1 A_2 + \bar{A}_1 \bar{A}_2)^2$$

$$+ (2 - 3x^2 + 3y^2)(A_1 \bar{A}_2 + A_2 \bar{A}_1)^2$$

$$+ 8\gamma(A_1 A_2 + \bar{A}_1 \bar{A}_2)(A_1 \bar{A}_2 + A_2 \bar{A}_1)]$$

For simplicity we have assumed CP invariance in deriving eq. (8).

Searching for $D^0-\bar{D}^0$ mixing via like-sign dileptons is described by a special case of eq. (8):

$$A_1 = A_2 = A,$$

$$\bar{A}_1 = \bar{A}_2 = 0 \quad \text{for } f_1 = f_2 = \ell^+ + \ldots$$

in $D^0\bar{D}^0 \rightarrow \ell^+ \ell^-$.

Therefore (for $x, y \ll 1$)

$$\left|\frac{N(\ell^+ \ell^-)}{N(\ell^+ \ell^-)}\right|_{D^0\bar{D}^0} = \frac{1}{2}(x^2 + y^2), \quad l = \text{odd},$$

$$= \frac{3}{2}(x^2 + y^2), \quad l = \text{even}.$$

The other method employs, as mentioned in the introduction, non-leptonic decays with strangeness $S = \pm 2$ in the final state. A simple example is provided by

$$f_1 = f_2 = K^- \pi^+ \quad \text{or } K^- \rho^+, \quad \text{thus}$$

$$A_1 = A_2 = A, \quad \bar{A}_1 = \bar{A}_2 = \bar{A},$$

$$\left|\frac{N(K^- \pi^+, K^- \rho^+)}{N(K^- \pi^+, K^- \rho^+)}\right|_{D^0\bar{D}^0} = \frac{1}{2}(x^2 + y^2), \quad l = \text{odd},$$

$$= \frac{3}{2}(x^2 + y^2) + 4|\rho|^2 + 8y|\rho|, \quad l = \text{even},$$

where in the last line we have used that \bar{A} being doubly Cabibbo suppressed is tiny compared to A; $|\rho|^2 = |\bar{A}|^2/|A|^2$ naively equals $t g^4 \theta_C$. We will come back to this point in the next section.

From eq. (13) one reads off an important result: for $l = \text{odd}$ only mixing, i.e. x and/or $y \neq 0$, can produce $S = \pm 2$ final states of the type $f_1 = f_2 = \text{two-body final state } f = K\pi, K\rho, K^*\pi, \text{but DCSD cannot} \text{.} \text{For} f_1 \neq f_2 \text{this result does not hold in general anymore. E.g. for } f_1 = K^- \pi^+, f_2 = K^- \rho^+ \text{ one obtains from eq. (8) for } x = y = 0:\n
$$\left|\frac{N(K^- \pi^+, K^- \rho^+)}{N(K^- \pi^+, K^* \rho^+)}\right|_{l = \text{odd}} = |\rho_{PV} - \rho_{PP}|^2,$$

where we have defined

$$\rho_{PP} = \frac{A(D^0 \rightarrow K^- \pi^+)}{A(D^0 \rightarrow K^- \pi^+)} \quad \rho_{PV} = \frac{A(D^0 \rightarrow K^- \rho^+)}{A(D^0 \rightarrow K^- \rho^+)}.$$
If doubly Cabibbo suppressed decays possessed a universal suppression factor relative to Cabibbo favoured modes, i.e. $\rho_{pp} = \rho_{PV} = \rho$ then DCSD still could not contribute to $S = \pm 2$ final states for $l = \text{odd}$ even when $f_1 \neq f_2$. However as we will discuss in some detail in the next section such a universal suppression factor very likely does not exist.

If f is a genuine three-body final state like $K\pi\pi$ with the $K\rho$ and $K^*\pi$ combinations taken out, then one has to refine the analysis given above: for now the final state is not characterized any more by just one momentum k. Fortunately the MARK III data show [2] that almost all $K\pi\pi$ final states originate from PV modes.

A last example for illustration:

$$ \left| \frac{N(\ell^+ \nu K^-, K^+ \rho^+)}{N(\ell^+ \nu K^-, K^+ \rho^-)} \right| |D^0\bar{D}^0| = \rho_{PV}^2 + \frac{1}{2} (x^2 + y^2), \quad l = \text{odd}, $$

$$ = \rho_{PV}^2 + \frac{1}{2} (x^2 + y^2), \quad l = \text{even} \quad (16) $$

To summarize this section’s discussion: if the $D^0\bar{D}^0$ pair is produced with an odd relative angular momentum, then the contribution of DCSD to $S = \pm 2$ final states is strongly suppressed; it actually vanishes for $f + f$ final states with $f = \text{two-body final state}$. For an even relative orbital angular momentum the mixing signal is enhanced (see eq. (13)) — however the physical background process, namely DCSD, now contributes also with increased strength.

Thus it is very relevant to note that $D^0\bar{D}^0$ occur in a p wave in the reactions

$$ e^+e^- \rightarrow \gamma \rightarrow D\bar{D}, $$

$$ e^+e^- \rightarrow D^*\bar{D} + D\bar{D}^* \rightarrow D\bar{D}\pi, \quad (17) $$

and in an s wave in

$$ e^+e^- \rightarrow D^*\bar{D} + D\bar{D}^* \rightarrow D\bar{D}\gamma, $$

$$ e^+e^- \rightarrow D^*\bar{D}^* \rightarrow D\bar{D} + \pi\gamma. \quad (18) $$

3. doubly Cabibbo Suppressed D Decays (=DCSD)

On the quark level there is a simple relationship between Cabibbo favoured and doubly Cabibbo suppressed transitions:

$$ \mathcal{L}(\Delta C = -1, \Delta S = 1) = -t g^2 \theta_c \mathcal{L}(\Delta C = -1, \Delta S = -1). \quad (19) $$

Invoking duality ideas one can proceed to calculate the inclusive hadronic decays using these quark operators. The two types of D decays proceed via quark diagrams with the same topology (namely both via spectator diagrams as well as W-exchange diagrams); the phase space corrections are identical (at least as long as the masses of the up and down quarks can be ignored); also the strong final state interactions are identical. Thus one finds for the total rate of DCSD:

$$ \Gamma(D^0 \rightarrow S = 1) = \eta g^4 \theta_c \Gamma(D^0 \rightarrow S = -1). \quad (20) $$

However it is unlikely that just one universal suppression factor, be it $t g^4 \theta_c$ or some other number, will affect the individual DCSD. We will consider two relevant examples to explain this point, namely the rates for $D^0 \rightarrow K^+\pi^-$ versus $D^0 \rightarrow K^-\pi^+$ and for $D^0 \rightarrow K^+\rho^-$ versus $D^0 \rightarrow K^-\rho^+$.

To compute these rates we follow the general procedure of Bauer and Stech [7]: in the effective hamiltonian one replaces the product of quark currents by the product of the corresponding hadron currents. The matrix elements are then determined to be

$$ \langle \pi^+|\bar{u} \gamma_\mu |d|0 \rangle = f_\pi p_\mu^T, \quad (23) $$

$$ \langle K|\bar{s} \gamma_\mu |D^0 \rangle \quad (24) $$

with $q = p_D - p_K$. The other matrix elements are given by the analogous expressions. One then calculates

$$ |\rho_{pp}|^2 = \frac{A(D^0 \rightarrow K^+\pi^-)}{A(D^0 \rightarrow K^-\pi^+)} \quad (25) $$

for $f_K = 166 \text{ MeV}, f_\pi = 133 \text{ MeV}$. Thus SU(3) breaking introduces a significant enhancement for DCSD.
leading to two pseudoscalar mesons.

For decays leading to a pseudoscalar plus a vector meson one follows the analogous procedure:

\[A(D^0 \rightarrow K^- \rho^+) \approx \langle K^- | \bar{s} \gamma_\mu c | D^0 \rangle \langle \rho^+ | \bar{u} \gamma_\mu d | 0 \rangle, \]

(26)

\[A(D^0 \rightarrow K^+ \rho^-) \approx \langle \rho^- | \bar{d} \gamma_\mu c | D^0 \rangle \langle K^+ | \bar{u} \gamma_\mu s | 0 \rangle. \]

(27)

To compute the matrix elements that involve vector mesons we again use the prescription of Stech [7]:

\[\langle \rho^+ | \bar{u} \gamma_\mu d | 0 \rangle = f_\rho m_\rho^2 e_\rho^0, \]

(28)

\[\langle \rho^- | \bar{d} \gamma_\mu c | D^0 \rangle \]

(29)

\[\approx 2m_\rho \left[\left(e_\rho \cdot p_D \right) / q^2 \right] \left[m_\rho^2 / (m_\rho^2 - q^2) \right] q_\mu + \ldots, \]

where in eq. (29) we have listed only those terms that contribute when the proper two matrix elements are contracted. Putting everything together we find

\[|A(D^0 \rightarrow K^- \rho^+)|^2 \approx 0.81 \left| f_K / f_\rho m_\rho \right|^2 \sin^4 \theta_c \approx 0.45 \sin^4 \theta_c, \]

(30)

i.e. a sizeable suppression relative to naive expectation, this time due to SU(6) breaking.

Comparing eqs. (25) and (30) leads to the conclusion that at least in the factorization approximation there is no universal suppression factor for DCSD. At the same time it is interesting to note that there is no clear contradiction to the ratio of the inclusive rates as expressed in eq. (20): an enhancement in the PP decay is largely offset by a suppression in the PV mode as expected from duality ideas.

4. \(D^0 - \bar{D}^0 \) mixing and like-sign dileptons. The CDHS collaboration has recently published data [8] on prompt like-sign dimuons in neutrino scattering:

\[N(\mu^+ \mu^-) / N(\mu^- \mu^+) \sim 0.02 - 0.04. \]

(31)

It should be kept in mind that the signal barely reaches the 3σ level; nevertheless it is worthwhile to consider the possibility that the signal is real. The "wrong-sign" muons are said to be quite consistent with coming from \(D \) decays as far as their kinematical distributions are concerned. Invoking \(cc \) production from gluons would reproduce this pattern; however perturbative calculations yield a rate roughly 30 times smaller than the observed signal.

We want to point out that also \(D^0 - \bar{D}^0 \) mixing would produce like-sign dimuons. For \(\text{Prob.}(D^0 \rightarrow \bar{D}^0) = 0.02 \) one obtains

\[N(\mu^+ \mu^-) / N(\mu^- \mu^+) \sim 0.015, \]

(32)

assuming \(D^* : D \) production of 3:1 which leads to \(N(D^0) \sim 3N(\bar{D}^0) \). One should also note that \(D - \bar{D} \) mixing will lead to a ratio of like-sign to opposite-sign dimuons that is to a very good approximation independent of the beam energy — in clear contrast to the \(cc \) hypothesis.

5. \(CP \) violation in \(D^0 \) decays. At first sight it might look pretentious to suggest searching for \(CP \) violation in \(D \) decays when the strength of \(D^0 - \bar{D}^0 \) mixing does not exceed 1%. Yet one should keep in mind that the usual mixing observables (like like-sign dileptons etc.) depend on \(x^2, y^2 \) (see eqs. (11), (13)). Mixing observed at strength ~1% thus corresponds to \(x \sim \frac{1}{\sqrt{3}} \). There are \(CP \) asymmetries that are only linear in \(x \) and therefore less suppressed. The main ingredient in this method (which previously has been discussed in a detailed way for \(B \) decays [9]) is to find final states that can be reached both in \(D^0 \) and \(\bar{D}^0 \) decays; examples are

\[f = K_S \pi^0, K_S \eta, K_S \omega, K_S \phi, K^+ K^- \]

(33)

The first four modes are Cabibbo allowed while the last one is Cabibbo suppressed; their branching ratios range from 1/2% to a few %. Then one finds

\[\frac{\sigma(e^+e^- \rightarrow \ell^+\ell^-/K^+ + Xf)}{\sigma(e^+e^- \rightarrow \ell^+\ell^-/K^+ + Xf)} + \frac{\sigma(e^+e^- \rightarrow \ell^+\ell^-/K^+ + Xf)}{\sigma(e^+e^- \rightarrow \ell^-/K^+ + Xf)} = 2x \sin 2\phi \]

if \(l = \text{even} \),

\[= 0 \]

if \(l = \text{odd} \),

(34)

where \(\sin 2\phi \) contains the complex phase responsible for \(CP \) violation. We also want to emphasize that now it is only the \(s \) wave configuration for \(D^0 - \bar{D}^0 \) that can exhibit the interesting effect, namely \(CP \) violation. Eq. (34) shows what was mentioned above, namely that \(D^0 \) decays to certain final states can exhibit \(CP \) asymmetries of order 0.1 · phase, when \(D^0 - \bar{D}^0 \) are produced in an \(l = \text{even} \) configuration. Later we will give some estimates on the possible size of such effects.
6. \(D^0 - \bar{D}^0 \) mixing and new physics. The authors of two recent papers [10] have emphasized that:

(i) Long-distance dynamics presumably dominate \(D - \bar{D} \) mixing.

(ii) \(\text{Prob}(D^0 \rightarrow \bar{D}^0) \) could reach values of at most a few times \(10^{-3} \). Thus mixing observed at the 1% level or more would be evidence for New Physics.

We agree with these findings in general and will present the details of our calculation elsewhere. Calculations based on dispersion relations and observed decay rates implicitly include all of long distance dynamics. Therefore New Physics would contribute to \(D - \bar{D} \) mixing only via short-distance dynamics.

Here we will give only the main findings of our analysis on possible new physics; the detailed results will be presented in a subsequent paper. It is very unlikely that \(D^0 - \bar{D}^0 \) mixing would be significantly enhanced by the presence of a fourth family, right-handed currents or supersymmetry states. The best candidate model would be based on a non-minimal Higgs sector.

Actually it has been pointed out before [11] that such models could give
\[
\Delta m_D \sim (1 - 2) \times 10^{-13} \text{ GeV}, \quad x_D \sim 0.1 \, .
\] (35)
The ratio of quark masses squared \((m_t/m_b)^2 \sim 100\) is the main reason in these models for \(\Delta m_D \gg \Delta m_K \).

Furthermore there exists no clear reason in these models why \(CP \) violating phases like \(\sin 2\phi \), see eq. (34), should be particularly small.

7. Summary. Proper consideration of quantum interference effects is highly important when searching for \(D^0 - \bar{D}^0 \) mixing at the percent level. Observing such a signal would be evidence for physics beyond the standard model. In that case it would make sense to perform a dedicated search for \(CP \) violation in \(D \) decays.

One of the authors (I.B.) gratefully acknowledges discussions with B. Weinstein which initiated this work.

References