Direct CP violation in charm at Belle

B. R. Ko∗†
Korea University, SEOUL, Republic of Korea
E-mail: brko@hep.korea.ac.kr

Using the full data sample collected with the Belle detector at the KEKB asymmetric-energy e^+e^- collider, we have searched for CP violation of charmed mesons in $D^+ \rightarrow K^0_S\pi^+$ and $D^0 \rightarrow h^+h^-$ decays, where h denotes K and π. We observe evidence for CP violation in $D^+ \rightarrow K^0_S\pi^+$ decay with 3.2 standard deviations away from zero, $(-0.363 \pm 0.094 \pm 0.067)\%$, while the asymmetry is consistent with the expected CP violation due to the neutral kaon in the final state. No evidence for CP violation in $D^0 \rightarrow h^+h^-$ is observed with $A_{CP}^{KK} = (-0.32 \pm 0.21 \pm 0.09)\%$ and $A_{CP}^{\pi\pi} = (+0.55 \pm 0.36 \pm 0.09)\%$. The CP asymmetry difference between $D^0 \rightarrow K^+K^-$ and $D^0 \rightarrow \pi^+\pi^-$ decays is also measured with $\Delta A_{CP}^{hh} = (-0.87 \pm 0.41 \pm 0.06)\%$, which is 2.1 standard deviations away from zero and supports recent LHCb and CDF measurements.

36th International Conference on High Energy Physics,
July 4-11, 2012
Melbourne, Australia

∗Speaker.
†on behalf of the Belle Collaboration.
Violation of the combined Charge-conjugation and Parity symmetries (CP) in the standard model (SM) is produced by a non-vanishing phase in the Cabibbo-Kobayashi-Maskawa flavor-mixing matrix [1], where the violation may be observed as a non-zero CP asymmetry defined as

\[A_{CP}^{D\rightarrow f} = \frac{\Gamma(D \rightarrow f) - \Gamma(\bar{D} \rightarrow \bar{f})}{\Gamma(D \rightarrow f) + \Gamma(\bar{D} \rightarrow \bar{f})} \tag{1} \]

where \(\Gamma \) is the partial decay width, \(D \) denotes a charmed meson, and \(f \) is a final state.

In this presentation, we report CP asymmetries of charmed mesons in the decays \(D^+ \rightarrow K^0_S \pi^+ \), \(D^0 \rightarrow K^+ K^- \), \(D^0 \rightarrow \pi^+ \pi^- \) [3], and the CP asymmetry difference between \(D^0 \rightarrow K^+ K^- \) and \(D^0 \rightarrow \pi^+ \pi^- \), which is an update of our previous publications [3, 4] using the full data sample collected with the Belle detector [5] at the KEKB [6] asymmetric-energy \(e^+ e^- \) collider. The \(D^+ \rightarrow K^0_S \pi^+ \) final state is a coherent sum of Cabibbo-favored and doubly Cabibbo-suppressed decays where no SM CP violation in charm decay is expected, while \((-0.332 \pm 0.006)\%\) CP violation due to \(K^0 - \bar{K}^0 \) mixing (denoted by \(A_{CP}^{K^0} \)) is expected with a neutral kaon in the final state. The \(D^0 \rightarrow h^+ h^- \) final states where \(h \) denotes \(K \) and \(\pi \) are singly Cabibbo-suppressed decays in which both direct (\(A_{CP}^{D\rightarrow f} \)) and indirect CP violations (\(A_{ind}^{D\rightarrow f} \)) are expected in the SM, while the CP asymmetry difference between the two decays, \(\Delta A_{CP}^{hh} = A_{CP}^{KK} - A_{CP}^{\pi\pi} \), reveals approximately direct CP violation with the universality of indirect CP violation in charm decays [8]. The data were recorded at the \(\Upsilon(nS) \) resonances \((n = 1, 2, 3, 4, 5)\) or near the \(\Upsilon(4S) \) resonance and the integrated luminosity is \(\sim 1 \) ab\(^{-1}\).

We determine the quantity \(A_{CP}^{D\rightarrow f} \) defined in Eq. (1) by measuring the asymmetry in the signal yield

\[A_{rec}^{D\rightarrow f} = \frac{N_{rec}^{D\rightarrow f} - N_{rec}^{\bar{D}\rightarrow \bar{f}}}{N_{rec}^{D\rightarrow f} + N_{rec}^{\bar{D}\rightarrow \bar{f}}} = A_{CP}^{D\rightarrow f} + A_{FB} + A_{\varepsilon}^{f}, \tag{2} \]

where \(N_{rec} \) is the number of reconstructed decays. The \(A_{FB} \) is forward-backward asymmetry in \(e^+ e^- \rightarrow c\bar{c} \) process and the \(A_{\varepsilon}^{f} \) is final state particle detection asymmetry where the latter depends on the final state particles while the former does not. For a slow pion detection asymmetry which is involved in \(D^0 \rightarrow h^+ h^- \) reconstruction via \(D^+ \), we correct for the asymmetry using the method described in our previous publication [3]. A fast pion detection asymmetry which is involved in \(D^+ \rightarrow K^0_S \pi^+ \) reconstruction is corrected for using the method described in Ref. [3]. With assumption the \(A_{FB} \) is the same for all charmed mesons, Refs. [3, 4] use CP violation free large statistics of resonance data samples to correct for the \(A_{\varepsilon}^{f} \). For the final state with a neutral kaon, we have to take into account additional corrections which are asymmetry due to different interactions between \(K^0 \) and \(\bar{K}^0 \) with detector [10] and experiment dependent \(A_{CP}^{K^0} \) with \(K_S^0 \) decay time dependency on it [11]. Once we correct for \(A_{\varepsilon}^{f} \), then \(A_{CP}^{D\rightarrow f} \) is obtained in bins of the polar angle of charmed meson momentum at the center-of-mass system (c.m.s.) using antisymmetry of \(A_{FB} \) in the polar angle of charmed meson momentum at the c.m.s.

Figure [1] shows invariant masses of \(D^\pm \rightarrow K^0_S \pi^\pm \) together with the fits that result in \(\sim 1.74 \)M reconstructed decays and the measured \(A_{CP} \) in bins of the polar angle of \(D^\pm \) momentum at the c.m.s. From the right plot in Fig. [1], we obtain \(A_{CP}^{D^+\rightarrow K^0_S \pi^+} = (-0.363 \pm 0.094 \pm 0.067)\% \) which shows 3.2\(\sigma \) deviations from zero. This is the first evidence for CP violation in charm decays from a single decay mode while the measured asymmetry is consistent with the \(A_{CP}^{K^0} \). After subtracting experiment dependent \(A_{CP}^{K^0} \) [11], the CP violation due to change in charm, \(A_{CP}^{M_{CP}} \), is measured to be \((-0.024 \pm 0.094 \pm 0.067)\% \) [9].
Direct CP violation in charm at Belle

B. R. Ko

Figure 1: $M(K_{S}^{0} \pi^{+})$ (left top) and $M(K_{S}^{0} \pi^{-})$ (left bottom) distributions where the shaded and hatched are $D_{s}^{+} \rightarrow K_{S}^{0} K^{+}$ due to particle misidentification and combinatorial backgrounds. Right plot is A_{CP} as a function of $\cos \theta_{D_{s}^{+}}^{c.m.s.}$ where the thick line is the mean value of A_{CP} while the hatched band is the $\pm 1 \sigma_{\text{total}}$ interval, where σ_{total} is the total uncertainty.

Figure 2: Left four plots show reconstructed signal distributions described in the text and right two plots show preliminary results of A_{CP} as a function of the polar angle of D^{*+} momentum at the c.m.s.

Figure 2 shows reconstructed signal distributions showing 14.7M $D^{0} \rightarrow K^{-} \pi^{+}$, 3.1M D^{*+} tagged $D^{0} \rightarrow K^{-} \pi^{+}$, 282k D^{*+} tagged $D^{0} \rightarrow K^{+} K^{-}$, and 123k D^{*+} tagged $D^{0} \rightarrow \pi^{+} \pi^{-}$ on top of the high signal purities, respectively, and the measured A_{CP} in bins of the polar angle of D^{*+} momentum at the c.m.s. From the right plot in Fig. 2, we obtain $A_{CP}^{KK} = (-0.32 \pm 0.21 \pm 0.09)\%$ and $A_{CP}^{\pi\pi} = (+0.55 \pm 0.36 \pm 0.09)\%$ where the former shows the best sensitivity to date. From the two measurements, we obtain $\Delta A_{CP}^{hh} = (-0.87 \pm 0.41 \pm 0.06)\%$ which shows 2.1σ deviations from zero and supports recent LHCb and CDF measurements [12, 13]. By combining LHCb, CDF, and Belle results, the average of ΔA_{CP}^{hh} becomes $(-0.74 \pm 0.15)\%$.

With a help from Marco Gersabeck from Heavy Flavor Averaging Group (HFAG), Fig. 3 shows ΔA_{CP} and A_{F} fit reflecting the new Belle results reported in this presentation and results in $\Delta a_{CP}^{\text{dir}} = (-0.678 \pm 0.147)\%$ and $a_{CP}^{\text{ind}} = (+0.027 \pm 0.163)\%$ [4].

In summary, we observe evidence for CP violation in the decay $D^{+} \rightarrow K_{S}^{0} \pi^{+}$ where the ev-
Direct CP violation in charm at Belle

B. R. Ko

Figure 3: ΔA_{CP} and A_{Γ} fit from HFAG.

Evidence is consistent with the expected CP violation due to $K^0 - \bar{K}^0$ mixing. No evidence for CP violation in $D^0 \rightarrow h^+h^-$ is observed and the ΔA_{CP}^{hh} is measured to be $(-0.87 \pm 0.41 \pm 0.06)\%$.

References

[2] Throughout this Letter the charge conjugate decay mode is also implied unless stated otherwise.